BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18167311)

  • 1. FRET-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy.
    Adachi T; Tsubata T
    Biochem Biophys Res Commun; 2008 Mar; 367(2):377-82. PubMed ID: 18167311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring calcium signaling using genetically targetable fluorescent indicators.
    Palmer AE; Tsien RY
    Nat Protoc; 2006; 1(3):1057-65. PubMed ID: 17406387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring calcium concentration in neurons with cameleon.
    Liu X; Gong H; Li X; Zhou W
    J Biosci Bioeng; 2008 Feb; 105(2):106-9. PubMed ID: 18343335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus.
    Evanko DS; Haydon PG
    Cell Calcium; 2005 Apr; 37(4):341-8. PubMed ID: 15755495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal microscopic systems for long-term imaging of intracellular calcium using a ratiometric genetically-encoded calcium indicator.
    Miyamoto A; Bannai H; Michikawa T; Mikoshiba K
    Biochem Biophys Res Commun; 2013 May; 434(2):252-7. PubMed ID: 23535376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new pair for inter- and intra-molecular FRET measurement.
    Yang X; Xu P; Xu T
    Biochem Biophys Res Commun; 2005 May; 330(3):914-20. PubMed ID: 15809083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation.
    Derler I; Hofbauer M; Kahr H; Fritsch R; Muik M; Kepplinger K; Hack ME; Moritz S; Schindl R; Groschner K; Romanin C
    J Physiol; 2006 Nov; 577(Pt 1):31-44. PubMed ID: 16959851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronin 1 is essential for IgM-mediated Ca2+ mobilization in B cells but dispensable for the generation of immune responses in vivo.
    Combaluzier B; Mueller P; Massner J; Finke D; Pieters J
    J Immunol; 2009 Feb; 182(4):1954-61. PubMed ID: 19201848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging.
    Sauer B; Tian Q; Lipp P; Kaestner L
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1328-32. PubMed ID: 25447281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing calcium signaling in cells by digitized wide-field and confocal fluorescent microscopy.
    Roe MW; Fiekers JF; Philipson LH; Bindokas VP
    Methods Mol Biol; 2006; 319():37-66. PubMed ID: 16719350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chapter 22: Quantitation of protein-protein interactions: confocal FRET microscopy.
    Periasamy A; Wallrabe H; Chen Y; Barroso M
    Methods Cell Biol; 2008; 89():569-98. PubMed ID: 19118691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence microscopy methods in the study of protein structure and function.
    Jensen-Smith H; Currall B; Rossino D; Tiede L; Nichols M; Hallworth R
    Methods Mol Biol; 2009; 493():369-79. PubMed ID: 18839359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of calcium dynamics in pollen tube cytoplasm.
    Barberini ML; Muschietti J
    Methods Mol Biol; 2015; 1242():49-57. PubMed ID: 25408442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using co-cultures expressing fluorescence resonance energy transfer based protein biosensors to simultaneously image caspase-3 and Ca2+ signaling.
    Chiang JJ; Truong K
    Biotechnol Lett; 2005 Aug; 27(16):1219-27. PubMed ID: 16158267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell.
    Miyamoto A; Miyauchi H; Kogure T; Miyawaki A; Michikawa T; Mikoshiba K
    Biochem Biophys Res Commun; 2015 Apr; 460(1):82-7. PubMed ID: 25998736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'In situ' high pressure confocal Ca(2+)-fluorescence microscopy in skeletal muscle: a new method to study pressure limits in mammalian cells.
    Friedrich O; Wegner FV; Hartmann M; Frey B; Sommer K; Ludwig H; Fink RH
    Undersea Hyperb Med; 2006; 33(3):181-95. PubMed ID: 16869532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.