BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 18167357)

  • 1. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.
    Miki H; Zhou Z; Li M; Hwang TC; Bompadre SG
    J Biol Chem; 2010 Jun; 285(26):19967-75. PubMed ID: 20406820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.
    Bompadre SG; Hwang TC
    Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels.
    Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC
    J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single amino acid substitution in CFTR converts ATP to an inhibitory ligand.
    Lin WY; Jih KY; Hwang TC
    J Gen Physiol; 2014 Oct; 144(4):311-20. PubMed ID: 25225552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
    Wang W; Bernard K; Li G; Kirk KL
    J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Chen JH; Cai Z; Sheppard DN
    J Biol Chem; 2009 Dec; 284(51):35495-506. PubMed ID: 19837660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
    Okeyo G; Wang W; Wei S; Kirk KL
    J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.
    Wang X; Bompadre SG; Li M; Hwang TC
    J Gen Physiol; 2009 Jan; 133(1):69-77. PubMed ID: 19114635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F
    Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
    Tsai MF; Li M; Hwang TC
    J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S; Li C; Ramjeesingh M; Bear CE
    Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.
    Belmonte L; Moran O
    Biochimie; 2015 Apr; 111():19-29. PubMed ID: 25640670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.