These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 18167439)
1. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. Cheng LQ; Na JR; Kim MK; Bang MH; Yang DC J Microbiol Biotechnol; 2007 Dec; 17(12):1937-43. PubMed ID: 18167439 [TBL] [Abstract][Full Text] [Related]
2. Highly selective microbial transformation of major ginsenoside Rb1 to gypenoside LXXV by Esteya vermicola CNU120806. Hou JG; Xue JJ; Sun MQ; Wang CY; Liu L; Zhang DL; Lee MR; Gu LJ; Wang CL; Wang YB; Zheng Y; Li W; Sung CK J Appl Microbiol; 2012 Oct; 113(4):807-14. PubMed ID: 22805203 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. An DS; Cui CH; Lee HG; Wang L; Kim SC; Lee ST; Jin F; Yu H; Chin YW; Lee HK; Im WT; Kim SG Appl Environ Microbiol; 2010 Sep; 76(17):5827-36. PubMed ID: 20622122 [TBL] [Abstract][Full Text] [Related]
4. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Cheng LQ; Na JR; Bang MH; Kim MK; Yang DC Phytochemistry; 2008 Jan; 69(1):218-24. PubMed ID: 17764709 [TBL] [Abstract][Full Text] [Related]
5. Gypenoside biotransformation into ginsenoside F2 by endophytic Zhang X; Xie Y; Dai Z; Liang Y; Zhu C; Su C; Song L; Wang K; Li J; Wei X Nat Prod Res; 2024 Sep; 38(17):3086-3092. PubMed ID: 37157839 [TBL] [Abstract][Full Text] [Related]
6. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII. Shin KC; Seo MJ; Oh HJ; Oh DK Biotechnol Lett; 2014 Jun; 36(6):1287-93. PubMed ID: 24563303 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property. Cui CH; Kim DJ; Jung SC; Kim SC; Im WT Molecules; 2017 May; 22(5):. PubMed ID: 28534845 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. Fu Y; Yin ZH; Yin CY J Appl Microbiol; 2017 Jun; 122(6):1579-1585. PubMed ID: 28256039 [TBL] [Abstract][Full Text] [Related]
9. Efficient biotransformation of ginsenoside Rb1 to Rd by isolated Aspergillus versicolor, excreting β-glucosidase in the spore production phase of solid culture. Lin F; Guo X; Lu W Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1117-27. PubMed ID: 26373416 [TBL] [Abstract][Full Text] [Related]
10. Lactobacillus ginsenosidimutans sp. nov., isolated from kimchi with the ability to transform ginsenosides. Jung HM; Liu QM; Kim JK; Lee ST; Kim SC; Im WT Antonie Van Leeuwenhoek; 2013 Apr; 103(4):867-76. PubMed ID: 23271644 [TBL] [Abstract][Full Text] [Related]
11. Co-transformation of Panax major ginsenosides Rb₁ and Rg₁ to minor ginsenosides C-K and F₁ by Cladosporium cladosporioides. Wu L; Jin Y; Yin C; Bai L J Ind Microbiol Biotechnol; 2012 Apr; 39(4):521-7. PubMed ID: 22270887 [TBL] [Abstract][Full Text] [Related]
12. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius. Quan LH; Kim YJ; Li GH; Choi KT; Yang DC World J Microbiol Biotechnol; 2013 Jun; 29(6):1001-7. PubMed ID: 23338962 [TBL] [Abstract][Full Text] [Related]
13. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Fu Y Lett Appl Microbiol; 2019 Feb; 68(2):134-141. PubMed ID: 30362617 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis on microbial and rat metabolism of ginsenoside Rb1 by high-performance liquid chromatography coupled with tandem mass spectrometry. Chen G; Yang M; Song Y; Lu Z; Zhang J; Huang H; Guan S; Wu L; Guo DA Biomed Chromatogr; 2008 Jul; 22(7):779-85. PubMed ID: 18384066 [TBL] [Abstract][Full Text] [Related]
15. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Cheng LQ; Kim MK; Lee JW; Lee YJ; Yang DC Biotechnol Lett; 2006 Jul; 28(14):1121-7. PubMed ID: 16788737 [TBL] [Abstract][Full Text] [Related]
16. Microbial conversion of major ginsenoside rb(1) to pharmaceutically active minor ginsenoside rd. Kim MK; Lee JW; Lee KY; Yang DC J Microbiol; 2005 Oct; 43(5):456-62. PubMed ID: 16273039 [TBL] [Abstract][Full Text] [Related]
17. Microbial transformation of ginsenoside Rb(1) by Acremonium strictum. Chen GT; Yang M; Song Y; Lu ZQ; Zhang JQ; Huang HL; Wu LJ; Guo DA Appl Microbiol Biotechnol; 2008 Jan; 77(6):1345-50. PubMed ID: 18040682 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model. Li J; Li R; Li N; Zheng F; Dai Y; Ge Y; Yue H; Yu S J Pharm Biomed Anal; 2018 Sep; 158():451-460. PubMed ID: 30032757 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of ginsenosides Rb(1), Rb(2), Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. Wang L; Liu QM; Sung BH; An DS; Lee HG; Kim SG; Kim SC; Lee ST; Im WT J Biotechnol; 2011 Nov; 156(2):125-33. PubMed ID: 21906640 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. Shin KC; Oh DK J Biotechnol; 2014 Feb; 172():30-7. PubMed ID: 24333127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]