BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18167477)

  • 1. High resolution image in bone biology II. Review of the literature.
    Cano J; Campo J; Vaquero JJ; Martínez González JM; Bascones A
    Med Oral Patol Oral Cir Bucal; 2008 Jan; 13(1):E31-5. PubMed ID: 18167477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution image in bone biology I. Review of the literature.
    Cano J; Campo J; Vaquero JJ; Martínez JM; Bascones A
    Med Oral Patol Oral Cir Bucal; 2007 Oct; 12(6):E454-8. PubMed ID: 17909513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal response to maxillary protraction with and without maxillary expansion: a finite element study.
    Gautam P; Valiathan A; Adhikari R
    Am J Orthod Dentofacial Orthop; 2009 Jun; 135(6):723-8. PubMed ID: 19524831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical analysis of bone and its microarchitecture based on in vivo voxel images.
    Ulrich D; Rietbergen B; Laib A; Rüegsegger P
    Technol Health Care; 1998 Dec; 6(5-6):421-7. PubMed ID: 10100944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.
    Lee CF; Chen PR; Lee WJ; Chen JH; Liu TC
    Laryngoscope; 2006 May; 116(5):711-6. PubMed ID: 16652076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maxillary expansion in customized finite element method models.
    Lee H; Ting K; Nelson M; Sun N; Sung SJ
    Am J Orthod Dentofacial Orthop; 2009 Sep; 136(3):367-74. PubMed ID: 19732671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of micro-CT, microradiography and histomorphometry in bone research.
    Gielkens PF; Schortinghuis J; de Jong JR; Huysmans MC; Leeuwen MB; Raghoebar GM; Bos RR; Stegenga B
    Arch Oral Biol; 2008 Jun; 53(6):558-66. PubMed ID: 18190892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angulation, bone density, and loading.
    Lin CL; Wang JC; Ramp LC; Liu PR
    Int J Oral Maxillofac Implants; 2008; 23(1):57-64. PubMed ID: 18416413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of osseointegration degree and pattern on resonance frequency in the assessment of dental implant stability using finite element analysis.
    Deng B; Tan KB; Liu GR; Lu Y
    Int J Oral Maxillofac Implants; 2008; 23(6):1082-8. PubMed ID: 19216277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis.
    Scherf H; Tilgner R
    Am J Phys Anthropol; 2009 Sep; 140(1):39-51. PubMed ID: 19280676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative morphometric evaluation of critical size experimental bone defects by microcomputed tomography.
    Efeoglu C; Fisher SE; Ertürk S; Oztop F; Günbay S; Sipahi A
    Br J Oral Maxillofac Surg; 2007 Apr; 45(3):203-7. PubMed ID: 16854508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maxillary protraction with and without maxillary expansion: a finite element analysis of sutural stresses.
    Gautam P; Valiathan A; Adhikari R
    Am J Orthod Dentofacial Orthop; 2009 Sep; 136(3):361-6. PubMed ID: 19732670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Undecalcified bone samples: a description of the technique and its utility based on the literature.
    Cano-Sánchez J; Campo-Trapero J; Gonzalo-Lafuente JC; Moreno-López LA; Bascones-Martínez A
    Med Oral Patol Oral Cir Bucal; 2005 Apr; 10 Suppl 1():E74-87. PubMed ID: 15800470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.