These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18167581)

  • 41. The change of the state of an endohedral fullerene by encapsulation into SWCNT: a Raman spectroelectrochemical study of Dy3N@C80 peapods.
    Kalbác M; Kavan L; Zukalová M; Yang S; Cech J; Roth S; Dunsch L
    Chemistry; 2007; 13(31):8811-7. PubMed ID: 17665375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD.
    Amama PB; Maschmann MR; Fisher TS; Sands TD
    J Phys Chem B; 2006 Jun; 110(22):10636-44. PubMed ID: 16771309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy.
    Cambré S; Wenseleers W; Goovaerts E; Resasco DE
    ACS Nano; 2010 Nov; 4(11):6717-24. PubMed ID: 20958073
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoinduced electron transfer in porphyrin- and fullerene/porphyrin-based rotaxanes as studied by time-resolved EPR spectroscopy.
    Jakob M; Berg A; Rubin R; Levanon H; Li K; Schuster DI
    J Phys Chem A; 2009 May; 113(20):5846-54. PubMed ID: 19402685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical doping of chirality-resolved carbon nanotubes.
    Kavan L; Kalbac M; Zukalova M; Dunsch L
    J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Azafullerene encapsulated single-walled carbon nanotubes with n-type electrical transport property.
    Kaneko T; Li Y; Nishigaki S; Hatakeyama R
    J Am Chem Soc; 2008 Mar; 130(9):2714-5. PubMed ID: 18257566
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spin-frustrated complex, [Fe(II)Fe(III)(trans-1,4-cyclohexanedicarboxylate)1.5]infinity: interplay between single-chain magnetic behavior and magnetic ordering.
    Zheng YZ; Xue W; Zhang WX; Tong ML; Chen XM; Grandjean F; Long GJ; Ng SW; Panissod P; Drillon M
    Inorg Chem; 2009 Mar; 48(5):2028-42. PubMed ID: 19235964
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase.
    Blackburn JL; Svedruzic D; McDonald TJ; Kim YH; King PW; Heben MJ
    Dalton Trans; 2008 Oct; (40):5454-61. PubMed ID: 19082027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endohedral condensation and higher exohedral coverage of Kr on open single-walled carbon nanotubes at 77 K.
    Jakubek ZJ; Simard B
    Langmuir; 2005 Nov; 21(23):10730-4. PubMed ID: 16262344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct measurement of charge transport through helical poly(ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes.
    Wang N; Zhang Y; Yano K; Durkan C; Plank N; Welland ME; Unalan HE; Mann M; Amaratunga GA; Milne WI
    Nanotechnology; 2009 Mar; 20(10):105201. PubMed ID: 19417511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The power of using continuous-wave and pulsed electron paramagnetic resonance methods for the structure analysis of ferric forms and nitric oxide-ligated ferrous forms of globins.
    Van Doorslaer S; Desmet F
    Methods Enzymol; 2008; 437():287-310. PubMed ID: 18433634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical transport properties of fullerene peapods interacting with light.
    Li YF; Kaneko T; Hatakeyama R
    Nanotechnology; 2008 Oct; 19(41):415201. PubMed ID: 21832638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photon-induced selective interaction between small-diameter metallic carbon nanotubes and triton X-100.
    Zhang ZB; Zhang SL
    J Am Chem Soc; 2007 Jan; 129(3):666-71. PubMed ID: 17227030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions.
    Kongkanand A; Kamat PV
    ACS Nano; 2007 Aug; 1(1):13-21. PubMed ID: 19203126
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic properties of multi-walled carbon nanotubes.
    Chang LW; Lue JT
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1956-63. PubMed ID: 19435066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sorting carbon nanotubes for electronics.
    Martel R
    ACS Nano; 2008 Nov; 2(11):2195-9. PubMed ID: 19206382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental Gibbs free energy considerations in the nucleation and growth of single-walled carbon nanotubes.
    Wagg LM; Hornyak GL; Grigorian L; Dillon AC; Jones KM; Blackburn J; Parilla PA; Heben MJ
    J Phys Chem B; 2005 May; 109(20):10435-40. PubMed ID: 16852264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.