These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural analysis of choline phospholipids by fast atom bombardment mass spectrometry and tandem mass spectrometry. Hayashi A; Matsubara T; Morita M; Kinoshita T; Nakamura T J Biochem; 1989 Aug; 106(2):264-9. PubMed ID: 2808321 [TBL] [Abstract][Full Text] [Related]
3. Characterization of phosphorylated amino acids by fast-atom bombardment mass spectrometry. Dass C Rapid Commun Mass Spectrom; 1989 Aug; 3(8):264-6. PubMed ID: 2485178 [TBL] [Abstract][Full Text] [Related]
4. Positive ion fast atom bombardment mass spectrometric analysis of the molecular species of glycerophosphatidylserine. Chen S; Kirschner G; Traldi P Anal Biochem; 1990 Nov; 191(1):100-5. PubMed ID: 2077932 [TBL] [Abstract][Full Text] [Related]
5. Structural determination of glucosylceramides isolated from marine sponge by fast atom bombardment collision-induced dissociation linked scan at constant B/E. Ahn YM; Lee WW; Jung JH; Lee SG; Hong J J Mass Spectrom; 2009 Dec; 44(12):1698-708. PubMed ID: 19824038 [TBL] [Abstract][Full Text] [Related]
6. Analysis of long-chain bases in sphingolipids by positive ion fast atom bombardment or matrix-assisted secondary ion mass spectrometry. Ohashi Y; Iwamori M; Ogawa T; Nagai Y Biochemistry; 1987 Jun; 26(13):3990-5. PubMed ID: 3651429 [TBL] [Abstract][Full Text] [Related]
7. A microwave-mediated saponification of galactosylceramide and galactosylceramide I3-sulfate and identification of their lyso-compounds by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Taketomi T; Hara A; Uemura K; Kurahashi H; Sugiyama E Biochem Biophys Res Commun; 1996 Jul; 224(2):462-7. PubMed ID: 8702411 [TBL] [Abstract][Full Text] [Related]
8. Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. Hsu FF; Turk J J Am Soc Mass Spectrom; 2004 Apr; 15(4):536-46. PubMed ID: 15047058 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a O-fatty-acylated sulfatide from equine brain. Mikami T; Tsuchihashi K; Kashiwagi M; Yachida Y; Daino T; Hashi K; Akino T; Gasa S Eur J Biochem; 1998 Jul; 255(1):289-95. PubMed ID: 9692930 [TBL] [Abstract][Full Text] [Related]
10. Metastable ions arising from pseudomolecular [M-H]- ions produced by fast-atom bombardment negative-ion mass spectrometry of ecdysteroids. Evershed RP; Prescott MC; Kabbouh M; Rees HH Rapid Commun Mass Spectrom; 1989 Oct; 3(10):352-5. PubMed ID: 2520218 [TBL] [Abstract][Full Text] [Related]
11. Coordination of sodium cation to an oxygen function and olefinic double bond to form molecular adduct ion in fast atom bombardment mass spectrometry. Morisaki N; Kobayashi H; Yamamura Y; Morisaki M; Nagasawa K; Hashimoto Y Chem Pharm Bull (Tokyo); 2002 Jul; 50(7):935-40. PubMed ID: 12130852 [TBL] [Abstract][Full Text] [Related]
12. Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. Hirahara Y; Wakabayashi T; Mori T; Koike T; Yao I; Tsuda M; Honke K; Gotoh H; Ono K; Yamada H J Neurochem; 2017 Feb; 140(3):435-450. PubMed ID: 27861899 [TBL] [Abstract][Full Text] [Related]
13. [Study on the mass spectrometry of natural products. XI. The MIKES of fast atom bombardment mass spectra of sodium adduct ions of phenylpropanoid glycosides]. Zhai JJ; Zhao FZ; Li HQ; Chen NY; Liu ZM; Jia ZJ; Chen YZ Yao Xue Xue Bao; 1992; 27(6):434-40. PubMed ID: 1442070 [TBL] [Abstract][Full Text] [Related]
14. Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. Domingues P; Domingues MR; Amado FM; Ferrer-Correia AJ Rapid Commun Mass Spectrom; 2001; 15(10):799-804. PubMed ID: 11344540 [TBL] [Abstract][Full Text] [Related]
15. New approach for characterization of lysosulfatide by TLC, fast atom bombardment mass spectrometry and NMR spectroscopy. Taketomi T; Hara A; Kutsukake Y; Sugiyama E J Biochem; 1990 May; 107(5):680-4. PubMed ID: 2398033 [TBL] [Abstract][Full Text] [Related]
16. Characterization of putative neurotransmitter N-acetyl-aspartyl-glutamic acid and some related compounds by fast atom bombardment and tandem mass spectrometry. Rubino FM; Zecca L; Chillemi F Biol Mass Spectrom; 1992 Feb; 21(2):85-91. PubMed ID: 1351404 [TBL] [Abstract][Full Text] [Related]
17. Positive and negative ion fast atom bombardment mass spectrometry of glycosphingolipids. Discrimination of the positional isomers of gangliosides with sialic acids. Arita M; Iwamori M; Higuchi T; Nagai Y J Biochem; 1984 Apr; 95(4):971-81. PubMed ID: 6746603 [TBL] [Abstract][Full Text] [Related]
18. Negative ion fast atom bombardment mass spectrometry of gangliosides and asialo gangliosides: a useful method for the structural elucidation of gangliosides and related neutral glycosphingolipids. Arita M; Iwamori M; Higuchi T; Nagai Y J Biochem; 1983 Jul; 94(1):249-56. PubMed ID: 6619111 [TBL] [Abstract][Full Text] [Related]
19. Fast atom bombardment mass spectrometry of sucrose monocaprate and sucrose monolaurate. de Koster CG; Pajarron AM; Heerma W; Haverkamp J Biol Mass Spectrom; 1993 May; 22(5):277-84. PubMed ID: 8507673 [TBL] [Abstract][Full Text] [Related]
20. Applications of fast atom bombardment mass spectrometry and fast atom bombardment mass spectrometry-mass spectrometry to the maduramicins and other polyether antibiotics. Siegel MM; McGahren WJ; Tomer KB; Chang TT Biomed Environ Mass Spectrom; 1987 Jan; 14(1):29-38. PubMed ID: 2952192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]