BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18171074)

  • 1. Segregated mathematical model for growth of anchorage-dependent MDCK cells in microcarrier culture.
    Möhler L; Bock A; Reichl U
    Biotechnol Prog; 2008; 24(1):110-9. PubMed ID: 18171074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth behavior of number distributed adherent MDCK cells for optimization in microcarrier cultures.
    Bock A; Sann H; Schulze-Horsel J; Genzel Y; Reichl U; Möhler L
    Biotechnol Prog; 2009; 25(6):1717-31. PubMed ID: 19691122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model of influenza A virus production in large-scale microcarrier culture.
    Möhler L; Flockerzi D; Sann H; Reichl U
    Biotechnol Bioeng; 2005 Apr; 90(1):46-58. PubMed ID: 15736163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux model for an anchorage-dependent MDCK cell line: characteristic growth phases and minimum substrate consumption flux distribution.
    Wahl A; Sidorenko Y; Dauner M; Genzel Y; Reichl U
    Biotechnol Bioeng; 2008 Sep; 101(1):135-52. PubMed ID: 18646224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal design of metabolic flux analysis experiments for anchorage-dependent mammalian cells using a cellular automaton model.
    Meadows AL; Roy S; Clark DS; Blanch HW
    Biotechnol Bioeng; 2007 Sep; 98(1):221-9. PubMed ID: 17657779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media.
    Genzel Y; Olmer RM; Schäfer B; Reichl U
    Vaccine; 2006 Aug; 24(35-36):6074-87. PubMed ID: 16781022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture.
    Genzel Y; Fischer M; Reichl U
    Vaccine; 2006 Apr; 24(16):3261-72. PubMed ID: 16472544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines.
    Hu AY; Weng TC; Tseng YF; Chen YS; Wu CH; Hsiao S; Chou AH; Chao HJ; Gu A; Wu SC; Chong P; Lee MS
    Vaccine; 2008 Oct; 26(45):5736-40. PubMed ID: 18761387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of a Madin-Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines.
    van Wielink R; Kant-Eenbergen HC; Harmsen MM; Martens DE; Wijffels RH; Coco-Martin JM
    J Virol Methods; 2011 Jan; 171(1):53-60. PubMed ID: 20933017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth limitations in high density microcarrier cultures.
    Butler M
    Dev Biol Stand; 1985; 60():269-80. PubMed ID: 3899789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells.
    Genzel Y; Ritter JB; König S; Alt R; Reichl U
    Biotechnol Prog; 2005; 21(1):58-69. PubMed ID: 15903241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production.
    Ikonomou L; Drugmand JC; Bastin G; Schneider YJ; Agathos SN
    Biotechnol Prog; 2002; 18(6):1345-55. PubMed ID: 12467471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell attachment to microcarriers affects growth, metabolic activity, and culture productivity in bioreactor culture.
    Nam JH; Ermonval M; Sharfstein ST
    Biotechnol Prog; 2007; 23(3):652-60. PubMed ID: 17500530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cellular automaton model for microcarrier cultures.
    Hawboldt KA; Kalogerakis N; Behie LA
    Biotechnol Bioeng; 1994 Jan; 43(1):90-100. PubMed ID: 18613314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture.
    Genzel Y; Behrendt I; König S; Sann H; Reichl U
    Vaccine; 2004 Jun; 22(17-18):2202-8. PubMed ID: 15149778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adherent and single-cell suspension culture of Madin-Darby canine kidney cells in serum-free medium].
    Huang D; Zhao L; Tan W
    Sheng Wu Gong Cheng Xue Bao; 2011 Apr; 27(4):645-52. PubMed ID: 21848001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative surfaces for microcarrier culture of animal cells.
    Gebb C; Clark JM; Hirtenstein MD; Lindgren G; Lindskog U; Lundgren B; Vretblad P
    Dev Biol Stand; 1981; 50():93-102. PubMed ID: 7341301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and assessment of tumorigenicity and oncogenicity of a Madin-Darby canine kidney (MDCK) cell line for influenza vaccine production.
    Liu J; Mani S; Schwartz R; Richman L; Tabor DE
    Vaccine; 2010 Feb; 28(5):1285-93. PubMed ID: 19944150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production-Flow cytometry and mathematical modeling.
    Schulze-Horsel J; Schulze M; Agalaridis G; Genzel Y; Reichl U
    Vaccine; 2009 May; 27(20):2712-22. PubMed ID: 19428884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.