These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 18171085)
1. TEM-1 beta-lactamase folds in a nonhierarchical manner with transient non-native interactions involving the C-terminal region. Lejeune A; Pain RH; Charlier P; Frère JM; Matagne A Biochemistry; 2008 Jan; 47(4):1186-93. PubMed ID: 18171085 [TBL] [Abstract][Full Text] [Related]
2. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase. Frech C; Wunderlich M; Glockshuber R; Schmid FX Biochemistry; 1996 Sep; 35(35):11386-95. PubMed ID: 8784194 [TBL] [Abstract][Full Text] [Related]
3. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. Kather I; Jakob RP; Dobbek H; Schmid FX J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the folding pathway of the TEM-1 beta-lactamase. Vanhove M; Raquet X; Frère JM Proteins; 1995 Jun; 22(2):110-8. PubMed ID: 7567959 [TBL] [Abstract][Full Text] [Related]
5. Unfolding a folding disease: folding, misfolding and aggregation of the marble brain syndrome-associated mutant H107Y of human carbonic anhydrase II. Almstedt K; Lundqvist M; Carlsson J; Karlsson M; Persson B; Jonsson BH; Carlsson U; Hammarström P J Mol Biol; 2004 Sep; 342(2):619-33. PubMed ID: 15327960 [TBL] [Abstract][Full Text] [Related]
6. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams. Wang X; Minasov G; Shoichet BK Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868 [TBL] [Abstract][Full Text] [Related]
7. Fast collapse but slow formation of secondary structure elements in the refolding transition of E. coli adenylate kinase. Ratner V; Amir D; Kahana E; Haas E J Mol Biol; 2005 Sep; 352(3):683-99. PubMed ID: 16098987 [TBL] [Abstract][Full Text] [Related]
8. The slow step of folding of Staphylococcus aureus PC1 beta-lactamase involves the collapse of a surface loop rate limited by the trans to cis isomerization of a non-proline peptide bond. Wheeler KA; Hawkins AR; Pain R; Virden R Proteins; 1998 Dec; 33(4):550-7. PubMed ID: 9849938 [TBL] [Abstract][Full Text] [Related]
10. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori. Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007 [TBL] [Abstract][Full Text] [Related]
11. The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 beta-lactamase is the trans to cis isomerization of a non-proline peptide bond. Vanhove M; Raquet X; Palzkill T; Pain RH; Frère JM Proteins; 1996 May; 25(1):104-11. PubMed ID: 8727322 [TBL] [Abstract][Full Text] [Related]
12. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin. Nishimura C; Dyson HJ; Wright PE J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. Cho JH; Sato S; Raleigh DP J Mol Biol; 2004 May; 338(4):827-37. PubMed ID: 15099748 [TBL] [Abstract][Full Text] [Related]
14. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps. Rea AM; Simpson ER; Meldrum JK; Williams HE; Searle MS Biochemistry; 2008 Dec; 47(48):12910-22. PubMed ID: 18991391 [TBL] [Abstract][Full Text] [Related]
15. Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase. Wani AH; Udgaonkar JB J Mol Biol; 2009 Mar; 387(2):348-62. PubMed ID: 19356591 [TBL] [Abstract][Full Text] [Related]
16. Detection of a hidden folding intermediate of the third domain of PDZ. Feng H; Vu ND; Bai Y J Mol Biol; 2005 Feb; 346(1):345-53. PubMed ID: 15663949 [TBL] [Abstract][Full Text] [Related]
17. Engineering stabilising beta-sheet interactions into a conformationally flexible region of the folding transition state of ubiquitin. Bofill R; Searle MS J Mol Biol; 2005 Oct; 353(2):373-84. PubMed ID: 16169558 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates. Nagarajan R; Pratt RF Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621 [TBL] [Abstract][Full Text] [Related]
19. The role of Trp-82 in the folding of intestinal fatty acid binding protein. Dalessio PM; Fromholt SE; Ropson IJ Proteins; 2005 Oct; 61(1):176-83. PubMed ID: 16080148 [TBL] [Abstract][Full Text] [Related]
20. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase. Hecky J; Müller KM Biochemistry; 2005 Sep; 44(38):12640-54. PubMed ID: 16171379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]