BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 18171136)

  • 41. Temporal constraints of a gene regulatory network: Refining a qualitative simulation.
    Ahmad J; Bourdon J; Eveillard D; Fromentin J; Roux O; Sinoquet C
    Biosystems; 2009 Dec; 98(3):149-59. PubMed ID: 19446002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth.
    Pechenick DA; Moore JH; Payne JL
    J Theor Biol; 2013 Aug; 330():26-36. PubMed ID: 23542384
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global stability analysis and robust design of multi-time-scale biological networks under parametric uncertainties.
    Meyer-Baese A; Koshkouei AJ; Emmett MR; Goodall DP
    Neural Netw; 2009; 22(5-6):658-63. PubMed ID: 19632813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineered internal noise stochastic resonator in gene network: a model study.
    Wang Z; Hou Z; Xin H; Zhang Z
    Biophys Chem; 2007 Feb; 125(2-3):281-5. PubMed ID: 17081673
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene regulatory network inference: data integration in dynamic models-a review.
    Hecker M; Lambeck S; Toepfer S; van Someren E; Guthke R
    Biosystems; 2009 Apr; 96(1):86-103. PubMed ID: 19150482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient analysis of stochastic switches and trajectories with applications to gene regulatory networks.
    Munsky B; Khammash M
    IET Syst Biol; 2008 Sep; 2(5):323-33. PubMed ID: 19045827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global robustness and identifiability of random, scale-free, and small-world networks.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2009 Mar; 1158():82-92. PubMed ID: 19348634
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multistability and oscillations in genetic control of metabolism.
    OyarzĂșn DA; Chaves M; Hoff-Hoffmeyer-Zlotnik M
    J Theor Biol; 2012 Feb; 295():139-53. PubMed ID: 22137968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-correcting networks: function, robustness, and motif distributions in biological signal processing.
    Kaluza P; Vingron M; Mikhailov AS
    Chaos; 2008 Jun; 18(2):026113. PubMed ID: 18601515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenotypic robustness can increase phenotypic variability after nongenetic perturbations in gene regulatory circuits.
    Espinosa-Soto C; Martin OC; Wagner A
    J Evol Biol; 2011 Jun; 24(6):1284-97. PubMed ID: 21443645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Replaying the evolutionary tape: biomimetic reverse engineering of gene networks.
    Marbach D; Mattiussi C; Floreano D
    Ann N Y Acad Sci; 2009 Mar; 1158():234-45. PubMed ID: 19348645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust control of uncertain context-sensitive probabilistic Boolean networks.
    Denic SZ; Vasic B; Charalambous CD; Palanivelu R
    IET Syst Biol; 2009 Jul; 3(4):279-95. PubMed ID: 19640166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.
    Egri-Nagy A; Nehaniv CL
    Artif Life; 2008; 14(3):299-312. PubMed ID: 18489252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene regulatory networks and the evolution of animal body plans.
    Davidson EH; Erwin DH
    Science; 2006 Feb; 311(5762):796-800. PubMed ID: 16469913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Starting, stopping, and resetting biological oscillators: in search of optimum perturbations.
    Forger DB; Paydarfar D
    J Theor Biol; 2004 Oct; 230(4):521-32. PubMed ID: 15363673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intrinsic properties of Boolean dynamics in complex networks.
    Kinoshita S; Iguchi K; Yamada HS
    J Theor Biol; 2009 Feb; 256(3):351-69. PubMed ID: 19014957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An evolutionary system using development and artificial Genetic Regulatory Networks for electronic circuit design.
    Zhan S; Miller JF; Tyrrell AM
    Biosystems; 2009 Dec; 98(3):176-92. PubMed ID: 19679161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of genetic networks modelled by piecewise deterministic Markov processes.
    Zeiser S; Franz U; Wittich O; Liebscher V
    IET Syst Biol; 2008 May; 2(3):113-35. PubMed ID: 18537453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Minimal gene regulatory circuits that can count like bacteriophage lambda.
    Avlund M; Dodd IB; Sneppen K; Krishna S
    J Mol Biol; 2009 Dec; 394(4):681-93. PubMed ID: 19796646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling transcriptional regulatory networks.
    Bolouri H; Davidson EH
    Bioessays; 2002 Dec; 24(12):1118-29. PubMed ID: 12447977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.