These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18171172)

  • 1. Population and community consequences of spatial subsidies derived from central-place foraging.
    Fagan WF; Lutscher F; Schneider K
    Am Nat; 2007 Dec; 170(6):902-15. PubMed ID: 18171172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating the roles of information and competitive ability on the spatial distribution of social foragers.
    Koops MA; Abrahams MV
    Am Nat; 2003 Apr; 161(4):586-600. PubMed ID: 12776886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization, conflict, and nonoverlapping foraging ranges in ants.
    Adler FR; Gordon DM
    Am Nat; 2003 Nov; 162(5):529-43. PubMed ID: 14618533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking traits of foraging animals to spatial patterns of plants: social and solitary ants generate opposing patterns of surviving seeds.
    Avgar T; Giladi I; Nathan R
    Ecol Lett; 2008 Mar; 11(3):224-34. PubMed ID: 18047586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-local competition in stage-structured metapopulations: a new mechanism of pattern formation.
    Utz M; Kisdi E; Doebeli M
    Bull Math Biol; 2007 Jul; 69(5):1649-72. PubMed ID: 17265119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching on patch networks using correlated random walks: space usage and optimal foraging predictions using Markov chain models.
    Prasad BR; Borges RM
    J Theor Biol; 2006 May; 240(2):241-9. PubMed ID: 16256142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple central-place territories in wild young-of-the-year Atlantic salmon Salmo salar.
    Steingrímsson SO; Grant JW
    J Anim Ecol; 2008 May; 77(3):448-57. PubMed ID: 18248384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model.
    Persson L; Leonardsson K; de Roos AM; Gyllenberg M; Christensen B
    Theor Popul Biol; 1998 Dec; 54(3):270-93. PubMed ID: 9878605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing community size and connectance can increase stability in competitive communities.
    Fowler MS
    J Theor Biol; 2009 May; 258(2):179-88. PubMed ID: 19490878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population-level consequences of antipredator behavior: a metaphysiological model based on the functional ecology of the leaf-eared mouse.
    Ramos-Jiliberto R; González-Olivares E; Bozinovic F
    Theor Popul Biol; 2002 Aug; 62(1):63-80. PubMed ID: 12056865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecific variation in critical patch size and gap-crossing ability as determinants of geographic range size distributions.
    Fagan WF; Cantrell RS; Cosner C; Ramakrishnan S
    Am Nat; 2009 Mar; 173(3):363-75. PubMed ID: 19159262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing organization and flexibility in foraging dynamics.
    Tabone M; Ermentrout B; Doiron B
    J Theor Biol; 2010 Oct; 266(3):391-400. PubMed ID: 20627107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prior knowledge about spatial pattern affects patch assessment rather than movement between patches in tactile-feeding mallard.
    Klaassen RH; Nolet BA; VAN Leeuwen CH
    J Anim Ecol; 2007 Jan; 76(1):20-9. PubMed ID: 17184349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring rarity using a general model for distribution and abundance.
    Kean J; Barlow N
    Am Nat; 2004 Mar; 163(3):407-16. PubMed ID: 15026976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extended Moran effect and large-scale synchronous fluctuations in the size of great tit and blue tit populations.
    Saether BE; Engen S; Grøtan V; Fiedler W; Matthysen E; Visser ME; Wright J; Møller AP; Adriaensen F; van Balen H; Balmer D; Mainwaring MC; McCleery RH; Pampus M; Winkel W
    J Anim Ecol; 2007 Mar; 76(2):315-25. PubMed ID: 17302839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning rules for social foragers: implications for the producer-scrounger game and ideal free distribution theory.
    Beauchamp G
    J Theor Biol; 2000 Nov; 207(1):21-35. PubMed ID: 11027477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fishery discards impact on seabird movement patterns at regional scales.
    Bartumeus F; Giuggioli L; Louzao M; Bretagnolle V; Oro D; Levin SA
    Curr Biol; 2010 Feb; 20(3):215-22. PubMed ID: 20116250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How patrollers set foraging direction in harvester ants.
    Greene MJ; Gordon DM
    Am Nat; 2007 Dec; 170(6):943-8. PubMed ID: 18171176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study.
    Pinaud D; Weimerskirch H
    J Anim Ecol; 2007 Jan; 76(1):9-19. PubMed ID: 17184348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The approximately ideal, more or less free distribution.
    Ollason JG; Yearsley JM
    Theor Popul Biol; 2001 Mar; 59(2):87-105. PubMed ID: 11302755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.