These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 18171578)
1. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins. Gross EM; Brune A; Walenciak O J Insect Physiol; 2008 Feb; 54(2):462-71. PubMed ID: 18171578 [TBL] [Abstract][Full Text] [Related]
2. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Choi C; Bareiss C; Walenciak O; Gross EM J Chem Ecol; 2002 Nov; 28(11):2245-56. PubMed ID: 12523565 [TBL] [Abstract][Full Text] [Related]
3. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. Walenciak O; Zwisler W; Gros EM J Chem Ecol; 2002 Oct; 28(10):2045-56. PubMed ID: 12474899 [TBL] [Abstract][Full Text] [Related]
4. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar. Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746 [TBL] [Abstract][Full Text] [Related]
5. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars. Barbehenn R; Dodick T; Poopat U; Spencer B Arch Insect Biochem Physiol; 2005 Sep; 60(1):32-43. PubMed ID: 16116620 [TBL] [Abstract][Full Text] [Related]
6. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae). Šustr V; Stingl U; Brune A J Insect Physiol; 2014 Aug; 67():64-9. PubMed ID: 24971929 [TBL] [Abstract][Full Text] [Related]
7. Phospholipid biosynthesis in the gut of Spodoptera litura larvae and effects of tannic acid ingestion. Aboshi T; Yoshinaga N; Nishida R; Mori N Insect Biochem Mol Biol; 2010 Apr; 40(4):325-30. PubMed ID: 20184956 [TBL] [Abstract][Full Text] [Related]
8. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera. Erhard D; Pohnert G; Gross EM J Chem Ecol; 2007 Aug; 33(8):1646-61. PubMed ID: 17577598 [TBL] [Abstract][Full Text] [Related]
9. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Barbehenn RV; Maben RE; Knoester JJ Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189 [TBL] [Abstract][Full Text] [Related]
10. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684 [TBL] [Abstract][Full Text] [Related]
11. Tannins in plant-herbivore interactions. Barbehenn RV; Peter Constabel C Phytochemistry; 2011 Sep; 72(13):1551-65. PubMed ID: 21354580 [TBL] [Abstract][Full Text] [Related]
12. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Gross EM; Johnson RL; Hairston NG Oecologia; 2001 Mar; 127(1):105-114. PubMed ID: 28547160 [TBL] [Abstract][Full Text] [Related]
13. Larvae of the fall webworm, Hyphantria cunea, inhibit cyanogenesis in Prunus serotina. Fitzgerald TD J Exp Biol; 2008 Mar; 211(Pt 5):671-7. PubMed ID: 18281329 [TBL] [Abstract][Full Text] [Related]
14. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation. Barbehenn RV; Martin MM J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724 [TBL] [Abstract][Full Text] [Related]
15. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
16. [Enzymatic activities of bacteria isolated from the digestive tract of caterpillars and the pupal content of Automeris zugana and Rothschildia lebeau (Lepidoptera: Saturniidae)]. Pinto-Tomás A; Uribe-Lorío L; Blanco J; Fontecha G; Rodríguez C; Mora M; Janzen D; Chavarría F; Díaz J; Sittenfeld A Rev Biol Trop; 2007 Jun; 55(2):401-15. PubMed ID: 19069755 [TBL] [Abstract][Full Text] [Related]
17. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Krishnan N; Kodrík D; Kłudkiewicz B; Sehnal F Insect Biochem Mol Biol; 2009 Mar; 39(3):180-8. PubMed ID: 19049872 [TBL] [Abstract][Full Text] [Related]
18. The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Yang L; Fang Z; Dicke M; van Loon JJ; Jongsma MA Insect Biochem Mol Biol; 2009 Jan; 39(1):55-61. PubMed ID: 18992817 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus. Li H; Sun J; Zhao J; Deng T; Lu J; Dong Y; Deng W; Mo J J Insect Physiol; 2012 Oct; 58(10):1368-75. PubMed ID: 22858833 [TBL] [Abstract][Full Text] [Related]
20. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. Vasta V; Mele M; Serra A; Scerra M; Luciano G; Lanza M; Priolo A J Anim Sci; 2009 Aug; 87(8):2674-84. PubMed ID: 19395521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]