BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18171599)

  • 1. A retrospective analysis of developmental toxicity studies in rat and rabbit: what is the added value of the rabbit as an additional test species?
    Janer G; Slob W; Hakkert BC; Vermeire T; Piersma AH
    Regul Toxicol Pharmacol; 2008 Mar; 50(2):206-17. PubMed ID: 18171599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study.
    Janer G; Hakkert BC; Piersma AH; Vermeire T; Slob W
    Reprod Toxicol; 2007 Jul; 24(1):103-13. PubMed ID: 17600672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB.
    Knudsen TB; Martin MT; Kavlock RJ; Judson RS; Dix DJ; Singh AV
    Reprod Toxicol; 2009 Sep; 28(2):209-19. PubMed ID: 19446433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the dog as non-rodent test species in the safety testing schedule associated with the registration of crop and plant protection products (pesticides): present status.
    Box RJ; Spielmann H
    Arch Toxicol; 2005 Nov; 79(11):615-26. PubMed ID: 15940470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monomethylarsonic acid and dimethylarsinic acid: developmental toxicity studies with risk assessment.
    Irvine L; Boyer IJ; DeSesso JM
    Birth Defects Res B Dev Reprod Toxicol; 2006 Feb; 77(1):53-68. PubMed ID: 16496296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The threshold of toxicological concern for prenatal developmental toxicity in rabbits and a comparison to TTC values in rats.
    van Ravenzwaay B; Dammann M; Buesen R; Flick B; Schneider S
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):1-8. PubMed ID: 22705707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A retrospective analysis of toxicity studies in dogs and impact on the chronic reference dose for conventional pesticide chemicals.
    Dellarco VL; Rowland J; May B
    Crit Rev Toxicol; 2010 Jan; 40(1):16-23. PubMed ID: 20144133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing developmental toxicity in a second species: are the differences due to species or replication error?
    Braakhuis HM; Theunissen PT; Slob W; Rorije E; Piersma AH
    Regul Toxicol Pharmacol; 2019 Oct; 107():104410. PubMed ID: 31226390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A retrospective analysis of the two-generation study: what is the added value of the second generation?
    Janer G; Hakkert BC; Slob W; Vermeire T; Piersma AH
    Reprod Toxicol; 2007 Jul; 24(1):97-102. PubMed ID: 17572063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of maternal toxicity on the outcome of developmental toxicity studies.
    Paumgartten FJ
    J Toxicol Environ Health A; 2010; 73(13-14):944-51. PubMed ID: 20563928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specificity of ethylene glycol-induced developmental toxicity: toxicokinetic and whole embryo culture studies in the rabbit.
    Carney EW; Tornesi B; Markham DA; Rasoulpour RJ; Moore N
    Birth Defects Res B Dev Reprod Toxicol; 2008 Dec; 83(6):573-81. PubMed ID: 19025792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms regulating toxicant disposition to the embryo during early pregnancy: an interspecies comparison.
    Carney EW; Scialli AR; Watson RE; DeSesso JM
    Birth Defects Res C Embryo Today; 2004 Dec; 72(4):345-60. PubMed ID: 15662707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship of maternal and fetal toxicity in developmental toxicology bioassays with notes on the biological significance of the "no observed adverse effect level".
    Chernoff N; Rogers EH; Gage MI; Francis BM
    Reprod Toxicol; 2008 Feb; 25(2):192-202. PubMed ID: 18242052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of the developmental, reproductive, and neurotoxicity of endosulfan.
    Silva MH; Gammon D
    Birth Defects Res B Dev Reprod Toxicol; 2009 Feb; 86(1):1-28. PubMed ID: 19243027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data.
    Sipes NS; Martin MT; Reif DM; Kleinstreuer NC; Judson RS; Singh AV; Chandler KJ; Dix DJ; Kavlock RJ; Knudsen TB
    Toxicol Sci; 2011 Nov; 124(1):109-27. PubMed ID: 21873373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Himalayan rabbit (Oryctolagus cuniculus L.): spontaneous incidences of endpoints from prenatal developmental toxicity studies.
    Viertel B; Trieb G
    Lab Anim; 2003 Jan; 37(1):19-36. PubMed ID: 12626069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental and reproductive toxicity studies on artemisone.
    Schmuck G; Klaus AM; Krötlinger F; Langewische FW
    Birth Defects Res B Dev Reprod Toxicol; 2009 Apr; 86(2):131-43. PubMed ID: 19306395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the predictive validity of frog embryo teratogenesis assay-Xenopus (FETAX).
    Fort DJ; Stover EL; Farmer DR; Lemen JK
    Teratog Carcinog Mutagen; 2000; 20(2):87-98. PubMed ID: 10679752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database.
    Matthews EJ; Kruhlak NL; Daniel Benz R; Contrera JF
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):115-35. PubMed ID: 17207562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.