BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18171624)

  • 1. Structures of open (R) and close (T) states of prephenate dehydratase (PDT)--implication of allosteric regulation by L-phenylalanine.
    Tan K; Li H; Zhang R; Gu M; Clancy ST; Joachimiak A
    J Struct Biol; 2008 Apr; 162(1):94-107. PubMed ID: 18171624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure of prephenate dehydratase from Streptococcus mutans.
    Shin MH; Ku HK; Song JS; Choi S; Son SY; Yang HJ; Kim HD; Kim SK; Park IY; Lee SJ
    J Microbiol; 2014 Jun; 52(6):490-5. PubMed ID: 24610334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pheA (Rv3838c) of Mycobacterium tuberculosis encodes an allosterically regulated monofunctional prephenate dehydratase that requires both catalytic and regulatory domains for optimum activity.
    Prakash P; Pathak N; Hasnain SE
    J Biol Chem; 2005 May; 280(21):20666-71. PubMed ID: 15753077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins.
    Euverink GJ; Wolters DJ; Dijkhuizen L
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):313-20. PubMed ID: 7755580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A monofunctional and thermostable prephenate dehydratase from the archaeon Methanocaldococcus jannaschii.
    Kleeb AC; Kast P; Hilvert D
    Biochemistry; 2006 Nov; 45(47):14101-10. PubMed ID: 17115705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea.
    Shlaifer I; Turnbull JL
    Extremophiles; 2016 Jul; 20(4):503-14. PubMed ID: 27290727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism.
    Liberles JS; Thórólfsson M; Martínez A
    Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins.
    Zhang S; Pohnert G; Kongsaeree P; Wilson DB; Clardy J; Ganem B
    J Biol Chem; 1998 Mar; 273(11):6248-53. PubMed ID: 9497350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.
    Cho MH; Corea OR; Yang H; Bedgar DL; Laskar DD; Anterola AM; Moog-Anterola FA; Hood RL; Kohalmi SE; Bernards MA; Kang C; Davin LB; Lewis NG
    J Biol Chem; 2007 Oct; 282(42):30827-35. PubMed ID: 17726025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan.
    Yamada T; Matsuda F; Kasai K; Fukuoka S; Kitamura K; Tozawa Y; Miyagawa H; Wakasa K
    Plant Cell; 2008 May; 20(5):1316-29. PubMed ID: 18487352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of autoregulation of phenylalanine hydroxylase.
    Kobe B; Jennings IG; House CM; Michell BJ; Goodwill KE; Santarsiero BD; Stevens RC; Cotton RG; Kemp BE
    Nat Struct Biol; 1999 May; 6(5):442-8. PubMed ID: 10331871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity.
    El-Azaz J; de la Torre F; Ávila C; Cánovas FM
    Plant J; 2016 Jul; 87(2):215-29. PubMed ID: 27125254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of prephenate dehydratase from Mycobacterium tuberculosis H37Rv by SAXS, ultracentrifugation, and computational analysis.
    Vivan AL; Caceres RA; Abrego JR; Borges JC; Ruggiero Neto J; Ramos CH; de Azevedo WF; Basso LA; Santos DS
    Proteins; 2008 Sep; 72(4):1352-62. PubMed ID: 18384085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of m-fluorophenylalanine-resistant gene and mutational analysis of feedback-resistant prephenate dehydratase from Corynebacterium glutamicum.
    Chan MS; Hsu WH
    Biochem Biophys Res Commun; 1996 Feb; 219(2):537-42. PubMed ID: 8605023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum.
    Hsu SK; Lin LL; Lo HH; Hsu WH
    Arch Microbiol; 2004 Mar; 181(3):237-44. PubMed ID: 14749915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria.
    Jensen RA; d'Amato TA; Hochstein LI
    Arch Microbiol; 1988; 148():365-71. PubMed ID: 11540103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors.
    Riepl RG; Glover GI
    J Biol Chem; 1979 Oct; 254(20):10321-8. PubMed ID: 114523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of the active site of allosteric chorismate mutase from Saccharomyces cerevisiae, and comments on the catalytic and regulatory mechanisms.
    Xue Y; Lipscomb WN
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10595-8. PubMed ID: 7479847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.