BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18171722)

  • 1. Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate.
    Mackiewicz M; Paigen B; Naidoo N; Pack AI
    Physiol Genomics; 2008 Mar; 33(1):91-9. PubMed ID: 18171722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The homeostatic regulation of sleep need is under genetic control.
    Franken P; Chollet D; Tafti M
    J Neurosci; 2001 Apr; 21(8):2610-21. PubMed ID: 11306614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homer1a is a core brain molecular correlate of sleep loss.
    Maret S; Dorsaz S; Gurcel L; Pradervand S; Petit B; Pfister C; Hagenbuchle O; O'Hara BF; Franken P; Tafti M
    Proc Natl Acad Sci U S A; 2007 Dec; 104(50):20090-5. PubMed ID: 18077435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Homer proteins in the maintenance of sleep-wake states.
    Naidoo N; Ferber M; Galante RJ; McShane B; Hu JH; Zimmerman J; Maislin G; Cater J; Wyner A; Worley P; Pack AI
    PLoS One; 2012; 7(4):e35174. PubMed ID: 22532843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep Homeostatic and Waking Behavioral Phenotypes in
    Grønli J; Clegern WC; Schmidt MA; Nemri RS; Rempe MJ; Gallitano AL; Wisor JP
    Sleep; 2016 Dec; 39(12):2189-2199. PubMed ID: 28057087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic dissection of quantitative trait locus for ethanol sensitivity in long- and short-sleep mice.
    Bennett B; Carosone-Link P; Beeson M; Gordon L; Phares-Zook N; Johnson TE
    Genes Brain Behav; 2008 Aug; 7(6):659-68. PubMed ID: 18363857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative trait locus mapping for acute functional tolerance to ethanol in the L x S recombinant inbred panel.
    Bennett B; Downing C; Carosone-Link P; Ponicsan H; Ruf C; Johnson TE
    Alcohol Clin Exp Res; 2007 Feb; 31(2):200-8. PubMed ID: 17250610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confirmation of provisional quantitative trait loci for voluntary alcohol consumption: genetic analysis in chromosome substitution strains and F2 crosses derived from A/J and C57BL/6J progenitors.
    Boyle AE; Gill KJ
    Pharmacogenet Genomics; 2008 Dec; 18(12):1071-82. PubMed ID: 19008751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic segregation of brain gene expression identifies retinaldehyde binding protein 1 and syntaxin 12 as potential contributors to ethanol preference in mice.
    Treadwell JA; Pagniello KB; Singh SM
    Behav Genet; 2004 Jul; 34(4):425-39. PubMed ID: 15082940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confirmation and fine mapping of ethanol sensitivity quantitative trait loci, and candidate gene testing in the LXS recombinant inbred mice.
    Bennett B; Carosone-Link P; Zahniser NR; Johnson TE
    J Pharmacol Exp Ther; 2006 Oct; 319(1):299-307. PubMed ID: 16803863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic determinants of sleep regulation in inbred mice.
    Franken P; Malafosse A; Tafti M
    Sleep; 1999 Mar; 22(2):155-69. PubMed ID: 10201060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene coding variant in Cas1 between the C57BL/6J and DBA/2J inbred mouse strains: linkage to a QTL for ethanol-induced locomotor activation.
    Xu Y; Demarest K; Hitzemann R; Sikela JM
    Alcohol Clin Exp Res; 2002 Jan; 26(1):1-7. PubMed ID: 11821648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.
    Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P
    Sleep; 2013 Mar; 36(3):311-23. PubMed ID: 23450268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms.
    Reuveni E; Ramensky VE; Gross C
    BMC Genomics; 2007 Jan; 8():24. PubMed ID: 17239255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring gene transcriptional modulatory relations: a genetical genomics approach.
    Li H; Lu L; Manly KF; Chesler EJ; Bao L; Wang J; Zhou M; Williams RW; Cui Y
    Hum Mol Genet; 2005 May; 14(9):1119-25. PubMed ID: 15772094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of daily physical activity using a mouse chromosome substitution strain.
    Yang HS; Vitaterna MH; Laposky AD; Shimomura K; Turek FW
    Physiol Genomics; 2009 Sep; 39(1):47-55. PubMed ID: 19567786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine mapping of polymorphic alcohol-related quantitative trait loci candidate genes using interval-specific congenic recombinant mice.
    Ehringer MA; Thompson J; Conroy O; Yang F; Hink R; Bennett B; Johnson TE; Sikela JM
    Alcohol Clin Exp Res; 2002 Nov; 26(11):1603-8. PubMed ID: 12436047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse inbred strain sequence information and yin-yang crosses for quantitative trait locus fine mapping.
    Shifman S; Darvasi A
    Genetics; 2005 Feb; 169(2):849-54. PubMed ID: 15520253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative genetics of age-related retinal degeneration: a second F1 intercross between the A/J and C57BL/6 strains.
    Danciger M; Yang H; Ralston R; Liu Y; Matthes MT; Peirce J; Lavail MM
    Mol Vis; 2007 Jan; 13():79-85. PubMed ID: 17277741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis.
    Mongrain V; Hernandez SA; Pradervand S; Dorsaz S; Curie T; Hagiwara G; Gip P; Heller HC; Franken P
    Sleep; 2010 Sep; 33(9):1147-57. PubMed ID: 20857860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.