BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18171915)

  • 1. Complex selection on intron size in Cryptococcus neoformans.
    Hughes SS; Buckley CO; Neafsey DE
    Mol Biol Evol; 2008 Feb; 25(2):247-53. PubMed ID: 18171915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary conservation of UTR intron boundaries in Cryptococcus.
    Roy SW; Penny D; Neafsey DE
    Mol Biol Evol; 2007 May; 24(5):1140-8. PubMed ID: 17374879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual modes of natural selection on upstream open reading frames.
    Neafsey DE; Galagan JE
    Mol Biol Evol; 2007 Aug; 24(8):1744-51. PubMed ID: 17494029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in mitochondrial genome organization of Cryptococcus neoformans strains.
    Litter J; Keszthelyi A; Hamari Z; Pfeiffer I; Kucsera J
    Antonie Van Leeuwenhoek; 2005; 88(3-4):249-55. PubMed ID: 16284931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on non-coding sequences.
    Sironi M; Menozzi G; Comi GP; Cagliani R; Bresolin N; Pozzoli U
    Hum Mol Genet; 2005 Sep; 14(17):2533-46. PubMed ID: 16037065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intron length evolution in Drosophila.
    Presgraves DC
    Mol Biol Evol; 2006 Nov; 23(11):2203-13. PubMed ID: 16923822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron loss and gain in Drosophila.
    Coulombe-Huntington J; Majewski J
    Mol Biol Evol; 2007 Dec; 24(12):2842-50. PubMed ID: 17965454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron size and exon evolution in Drosophila.
    Marais G; Nouvellet P; Keightley PD; Charlesworth B
    Genetics; 2005 May; 170(1):481-5. PubMed ID: 15781704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome.
    Fawcett JA; Rouzé P; Van de Peer Y
    Mol Biol Evol; 2012 Feb; 29(2):849-59. PubMed ID: 21998273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of mRNA-mediated intron loss in the human-pathogenic fungus Cryptococcus neoformans.
    Stajich JE; Dietrich FS
    Eukaryot Cell; 2006 May; 5(5):789-93. PubMed ID: 16682456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion/deletion and nucleotide polymorphism data reveal constraints in Drosophila melanogaster introns and intergenic regions.
    Ometto L; Stephan W; De Lorenzo D
    Genetics; 2005 Mar; 169(3):1521-7. PubMed ID: 15654088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective constraints on intron evolution in Drosophila.
    Parsch J
    Genetics; 2003 Dec; 165(4):1843-51. PubMed ID: 14704170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex selection on 5' splice sites in intron-rich organisms.
    Irimia M; Roy SW; Neafsey DE; Abril JF; Garcia-Fernandez J; Koonin EV
    Genome Res; 2009 Nov; 19(11):2021-7. PubMed ID: 19745111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributions of exons and introns in the human genome.
    Sakharkar MK; Chow VT; Kangueane P
    In Silico Biol; 2004; 4(4):387-93. PubMed ID: 15217358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence.
    Comeron JM
    Genetics; 2004 Jul; 167(3):1293-304. PubMed ID: 15280243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase distribution of spliceosomal introns: implications for intron origin.
    Nguyen HD; Yoshihama M; Kenmochi N
    BMC Evol Biol; 2006 Sep; 6():69. PubMed ID: 16959043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intron retention-dependent gene regulation in Cryptococcus neoformans.
    Gonzalez-Hilarion S; Paulet D; Lee KT; Hon CC; Lechat P; Mogensen E; Moyrand F; Proux C; Barboux R; Bussotti G; Hwang J; Coppée JY; Bahn YS; Janbon G
    Sci Rep; 2016 Aug; 6():32252. PubMed ID: 27577684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns and rates of intron divergence between humans and chimpanzees.
    Gazave E; Marqués-Bonet T; Fernando O; Charlesworth B; Navarro A
    Genome Biol; 2007; 8(2):R21. PubMed ID: 17309804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread intron loss suggests retrotransposon activity in ancient apicomplexans.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Sep; 24(9):1926-33. PubMed ID: 17522085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intron size in mammals: complexity comes to terms with economy.
    Pozzoli U; Menozzi G; Comi GP; Cagliani R; Bresolin N; Sironi M
    Trends Genet; 2007 Jan; 23(1):20-4. PubMed ID: 17070957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.