These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 1817207)
1. One-dimensional model of cardiac defibrillation. Plonsey R; Barr RC; Witkowski FX Med Biol Eng Comput; 1991 Sep; 29(5):465-9. PubMed ID: 1817207 [TBL] [Abstract][Full Text] [Related]
2. Direct measurements of membrane time constant during defibrillation strength shocks. Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638 [TBL] [Abstract][Full Text] [Related]
3. How hyperpolarization and the recovery of excitability affect propagation through a virtual anode in the heart. Charteris NP; Roth BJ Comput Math Methods Med; 2011; 2011():375059. PubMed ID: 21331264 [TBL] [Abstract][Full Text] [Related]
4. Effects of electroporation on transmembrane potential induced by defibrillation shocks. Krassowska W Pacing Clin Electrophysiol; 1995 Sep; 18(9 Pt 1):1644-60. PubMed ID: 7491308 [TBL] [Abstract][Full Text] [Related]
5. Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks. Latimer DC; Roth BJ IEEE Trans Biomed Eng; 1999 May; 46(5):612-4. PubMed ID: 10230141 [TBL] [Abstract][Full Text] [Related]
6. Inclusion of junction elements in a linear cardiac model through secondary sources: application to defibrillation. Plonsey R; Barr RC Med Biol Eng Comput; 1986 Mar; 24(2):137-44. PubMed ID: 3713274 [No Abstract] [Full Text] [Related]
7. [Passive propagation of the transmembrane potential induced by the capacities of the myocardium bioelectrolytes in its electric defibrillation]. Rybkin SN; Selishchev SV Med Tekh; 2004; (3):12-8. PubMed ID: 15293496 [TBL] [Abstract][Full Text] [Related]
8. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model. Huang Q; Eason JC; Claydon FJ IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823 [TBL] [Abstract][Full Text] [Related]
9. Construction of a computer model to investigate sawtooth effects in the Purkinje system. Vigmond EJ; Clements C IEEE Trans Biomed Eng; 2007 Mar; 54(3):389-99. PubMed ID: 17355050 [TBL] [Abstract][Full Text] [Related]
10. Refractoriness of cardiac muscle as affected by intercalated disks: a model study implications for fibrillation and defibrillation. Haas HG; Solchenbach K Gen Physiol Biophys; 2004 Jun; 23(2):133-71. PubMed ID: 15696857 [TBL] [Abstract][Full Text] [Related]
11. A bidomain model with periodic intracellular junctions: a one-dimensional analysis. Trayanova N; Pilkington TC IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331 [TBL] [Abstract][Full Text] [Related]
12. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Hooks DA; Tomlinson KA; Marsden SG; LeGrice IJ; Smaill BH; Pullan AJ; Hunter PJ Circ Res; 2002 Aug; 91(4):331-8. PubMed ID: 12193466 [TBL] [Abstract][Full Text] [Related]
13. A biophysical model for defibrillation of cardiac tissue. Keener JP; Panfilov AV Biophys J; 1996 Sep; 71(3):1335-45. PubMed ID: 8874007 [TBL] [Abstract][Full Text] [Related]
14. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. DeBruin KA; Krassowska W Ann Biomed Eng; 1998; 26(4):584-96. PubMed ID: 9662151 [TBL] [Abstract][Full Text] [Related]
15. Impedance to defibrillation countershock: does an optimal impedance exist? KenKnight BH; Eyüboğlu BM; Ideker RE Pacing Clin Electrophysiol; 1995 Nov; 18(11):2068-87. PubMed ID: 8552522 [TBL] [Abstract][Full Text] [Related]
16. Approximate solution to the bidomain equations for defibrillation problems. Patel SG; Roth BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021908. PubMed ID: 15783353 [TBL] [Abstract][Full Text] [Related]
17. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models. Colli Franzone P; Pavarino LF; Scacchi S Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963 [TBL] [Abstract][Full Text] [Related]
18. A generalized activating function for predicting virtual electrodes in cardiac tissue. Sobie EA; Susil RC; Tung L Biophys J; 1997 Sep; 73(3):1410-23. PubMed ID: 9284308 [TBL] [Abstract][Full Text] [Related]
19. Defibrillation threshold computed from normal and supernormal excitable cardiac tissue. Zhang H; Holden AV Math Biosci; 2004; 188():175-90. PubMed ID: 14766101 [TBL] [Abstract][Full Text] [Related]
20. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Neunlist M; Tung L Biophys J; 1995 Jun; 68(6):2310-22. PubMed ID: 7647235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]