These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1817209)

  • 1. Computationally two-dimensional finite-difference model for hollow-fibre blood-gas exchange devices.
    Baker DA; Holte JE; Patankar SV
    Med Biol Eng Comput; 1991 Sep; 29(5):482-8. PubMed ID: 1817209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravascular gas transfer. Membrane surface area and sweeping gas flows are of prime importance.
    von Segesser LK; Tkebuchava T; Marty B; Leskosek B; Tevaearai H
    ASAIO J; 1997; 43(5):M457-9. PubMed ID: 9360084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators.
    Turri F; Yanagihara JI
    Artif Organs; 2011 Jun; 35(6):579-92. PubMed ID: 21671959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advanced development of blood-gas exchanger].
    Sun X; Zhang W; Wu Q; Du Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1364-7. PubMed ID: 19166210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clinical evaluation of the Terumo Capiox SX18R hollow fiber oxygenator.
    Dekkers PA; Lawson DS; Smigla GR; Shearer IR
    J Extra Corpor Technol; 1995 Sep; 27(3):152-7. PubMed ID: 10155360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.
    Burn F; Ciocan S; Carmona NM; Berner M; Sourdon J; Carrel TP; Tevaearai Stahel HT; Longnus SL
    Interact Cardiovasc Thorac Surg; 2015 Sep; 21(3):352-8. PubMed ID: 26037378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional finite element model for oxygen transfer in cross-flow hollow fiber membrane artificial lungs.
    Dierickx PW; de Wachter DS; Verdonck PR
    Int J Artif Organs; 2001 Sep; 24(9):628-35. PubMed ID: 11693419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of the Mera Silox-S 0.5 and 0.8 m 2 silicone hollow-fibre membrane oxygenator for use in neonatal ECMO.
    Rais-Bahrami K; Mikesell G; Seale WR; Rivera O; Hearty JP; Short BL
    Perfusion; 1992; 7(4):315-20. PubMed ID: 10148027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a preprimed microporous hollow-fiber membrane for rapid response neonatal extracorporeal membrane oxygenation.
    Walczak R; Lawson DS; Kaemmer D; McRobb C; McDermott P; Smigla G; Shearer I; Lodge A; Jaggers J
    Perfusion; 2005 Sep; 20(5):269-75. PubMed ID: 16231623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pumpless arterio-venous extracorporeal lung assist compared with veno-venous extracorporeal membrane oxygenation during experimental lung injury.
    Kopp R; Bensberg R; Wardeh M; Rossaint R; Kuhlen R; Henzler D
    Br J Anaesth; 2012 May; 108(5):745-53. PubMed ID: 22374939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel scalable and monolithically integrated extracorporeal gas exchange device.
    Rieper T; Müller C; Reinecke H
    Biomed Microdevices; 2015 Oct; 17(5):86. PubMed ID: 26249794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of an intravenous gas exchanger (IVOX) in a venovenous bypass circuit.
    Tao W; Zwischenberger JB; Nguyen TT; Tzouanakis AE; Matheis EJ; Traber DL; Bidani A
    Ann Thorac Surg; 1994 Jun; 57(6):1484-90; discussion 1490-1. PubMed ID: 8010791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of factors affecting gas exchange in intravascular blood gas exchanger.
    Niranjan SC; Clark JW; San KY; Zwischenberger JB; Bidani A
    J Appl Physiol (1985); 1994 Oct; 77(4):1716-30. PubMed ID: 7836191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory evaluation of a new membrane oxygenator with a built-in hemoconcentrator.
    Nishida H; Suzuki S; Endo M; Koyanagi H; Kuwana K; Nakanishi H; Aoki M
    J Extra Corpor Technol; 1997 Dec; 29(4):189-93. PubMed ID: 10176128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branched vascular network architecture: a new approach to lung assist device technology.
    Hoganson DM; Anderson JL; Weinberg EF; Swart E; Orrick BK; Borenstein JT; Vacanti JP
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):990-5. PubMed ID: 20591445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wet-primed extracorporeal membrane oxygenation circuit with hollow-fiber membrane oxygenator maintains adequate function for use during cardiopulmonary resuscitation after 2 weeks on standby.
    Karimova A; Robertson A; Cross N; Smith L; O'callaghan M; Tuleu C; Long P; Beeton A; Han J; Ridout D; Goldman A; Brown K
    Crit Care Med; 2005 Jul; 33(7):1572-6. PubMed ID: 16003064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Carbon Dioxide Removal at Low Sweep Gas and Blood Flows.
    de Villiers Hugo J; Sharma AS; Ahmed U; Weerwind PW
    J Extra Corpor Technol; 2017 Dec; 49(4):257-261. PubMed ID: 29302116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen and CO2 transfer of a polypropylene dimpled membrane lung with variable secondary flows.
    Dorrington KL; Ralph ME; Bellhouse BJ; Gardaz JP; Sykes MK
    J Biomed Eng; 1985 Apr; 7(2):89-99. PubMed ID: 3999727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.