These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 1817211)
21. Experimental validation of non-invasive and fluid density independent methods for the determination of local wave speed and arrival time of reflected wave. Li Y; Khir AW J Biomech; 2011 Apr; 44(7):1393-9. PubMed ID: 21367424 [TBL] [Abstract][Full Text] [Related]
22. Determination of wave speed and wave separation in the arteries. Khir AW; O'Brien A; Gibbs JS; Parker KH J Biomech; 2001 Sep; 34(9):1145-55. PubMed ID: 11506785 [TBL] [Abstract][Full Text] [Related]
23. Pulsatile pressure-flow relations and pulse-wave propagation in the umbilical circulation of fetal sheep. Adamson SL; Whiteley KJ; Langille BL Circ Res; 1992 Apr; 70(4):761-72. PubMed ID: 1551202 [TBL] [Abstract][Full Text] [Related]
24. Analysis of flow in a two-dimensional collapsible channel using universal "tube" law. Matsuzaki Y; Ikeda T; Kitagawa T; Sakata S J Biomech Eng; 1994 Nov; 116(4):469-76. PubMed ID: 7869723 [TBL] [Abstract][Full Text] [Related]
25. Pressure/flow behaviour in collapsible tube subjected to forced downstream pressure fluctuations. Low HT; Chew YT; Winoto SH; Chin R Med Biol Eng Comput; 1995 Jul; 33(4):545-50. PubMed ID: 7475385 [TBL] [Abstract][Full Text] [Related]
26. Linear propagation of pulsatile waves in viscoelastic tubes. Horsten JB; Van Steenhoven AA; Van Dongen ME J Biomech; 1989; 22(5):477-84. PubMed ID: 2777822 [TBL] [Abstract][Full Text] [Related]
27. The dynamics of collapsible tubes. Bertram CD Symp Soc Exp Biol; 1995; 49():253-64. PubMed ID: 8571228 [TBL] [Abstract][Full Text] [Related]
29. Aperiodic flow-induced oscillations of collapsible tubes: a critical reappraisal. Bertram CD; Timmer J; Müller TG; Maiwald T; Winterhalder M; Voss HU Med Eng Phys; 2004 Apr; 26(3):201-14. PubMed ID: 14984842 [TBL] [Abstract][Full Text] [Related]
30. A mathematical model of unsteady collapsible tube behaviour. Bertram CD; Pedley TJ J Biomech; 1982; 15(1):39-50. PubMed ID: 7061526 [TBL] [Abstract][Full Text] [Related]
31. A study of the bifurcation behaviour of a model of flow through a collapsible tube. Armitstead JP; Bertram CD; Jensen OE Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267 [TBL] [Abstract][Full Text] [Related]
32. [Aspects of vascular physiology in clinical and vascular surgical practice: basic principles of vascular mechanics]. Nocke H; Meyer F; Lessmann V Zentralbl Chir; 2014 Oct; 139(5):499-507. PubMed ID: 23325520 [TBL] [Abstract][Full Text] [Related]
33. One-dimensional steady inviscid flow through a stenotic collapsible tube. Ku DN; Zeigler MN; Downing JM J Biomech Eng; 1990 Nov; 112(4):444-50. PubMed ID: 2273872 [TBL] [Abstract][Full Text] [Related]
34. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro. Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215 [TBL] [Abstract][Full Text] [Related]
35. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries. Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353 [TBL] [Abstract][Full Text] [Related]
36. Spatio-temporal Relationship between Three-Dimensional Deformations of a Collapsible Tube and the Downstream Flowfield. Bhargav VN; Francescato N; Mettelsiefen H; Usmani AY; Scarsoglio S; Raghav V J Fluids Struct; 2024 Jun; 127():. PubMed ID: 39184241 [TBL] [Abstract][Full Text] [Related]
37. Coupling arterial windkessel with peripheral vasomotion: modeling the effects on low-frequency oscillations. Baselli G; Porta A; Pagani M IEEE Trans Biomed Eng; 2006 Jan; 53(1):53-64. PubMed ID: 16402603 [TBL] [Abstract][Full Text] [Related]
38. "Wave" as defined by wave intensity analysis. Wang JJ; Shrive NG; Parker KH; Tyberg JV Med Biol Eng Comput; 2009 Feb; 47(2):189-95. PubMed ID: 18937000 [TBL] [Abstract][Full Text] [Related]
39. Pulsatile flow through a constricted tube: effect of stenosis morphology on hemodynamic parameters. Kelidis P; Konstantinidis E Comput Methods Biomech Biomed Engin; 2018 May; 21(7):479-487. PubMed ID: 30010433 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of a novel pulsatile extracorporeal life support system synchronized to the cardiac cycle: effect of rhythm changes on hemodynamic performance. Patel S; Wang S; Pauliks L; Chang D; Clark JB; Kunselman AR; Ündar A Artif Organs; 2015 Jan; 39(1):67-76. PubMed ID: 25626581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]