BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 18172503)

  • 1. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
    Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL
    Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions.
    Caprara MG; Myers CA; Lambowitz AM
    J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro peptide complementation assay for CYT-18-dependent group I intron splicing reveals a new role for the N-terminus.
    Geng C; Paukstelis PJ
    Biochemistry; 2014 Mar; 53(8):1311-9. PubMed ID: 24520960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Divergence of the Group I Intron Binding Surface in Fungal Mitochondrial Tyrosyl-tRNA Synthetases That Function in RNA Splicing.
    Lamech LT; Saoji M; Paukstelis PJ; Lambowitz AM
    J Biol Chem; 2016 May; 291(22):11911-27. PubMed ID: 27036943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases.
    Lamech LT; Mallam AL; Lambowitz AM
    PLoS Biol; 2014 Dec; 12(12):e1002028. PubMed ID: 25536042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase.
    Mohr G; Lambowitz AM
    Nature; 1991 Nov; 354(6349):164-7. PubMed ID: 1658660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-dependent transition states for ribonucleoprotein assembly.
    Webb AE; Rose MA; Westhof E; Weeks KM
    J Mol Biol; 2001 Jun; 309(5):1087-100. PubMed ID: 11399081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions.
    Kittle JD; Mohr G; Gianelos JA; Wang H; Lambowitz AM
    Genes Dev; 1991 Jun; 5(6):1009-21. PubMed ID: 1828448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA-like recognition of group I introns by a tyrosyl-tRNA synthetase.
    Myers CA; Kuhla B; Cusack S; Lambowitz AM
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2630-5. PubMed ID: 11854463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and evolution of fungal mitochondrial tyrosyl-tRNA synthetases with group I intron splicing activity.
    Paukstelis PJ; Lambowitz AM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6010-5. PubMed ID: 18413600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing. A new method for purifying the protein and characterization of physical and enzymatic properties pertinent to splicing.
    Saldanha RJ; Patel SS; Surendran R; Lee JC; Lambowitz AM
    Biochemistry; 1995 Jan; 34(4):1275-87. PubMed ID: 7530051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a phage Twort group I ribozyme-product complex.
    Golden BL; Kim H; Chase E
    Nat Struct Mol Biol; 2005 Jan; 12(1):82-9. PubMed ID: 15580277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface.
    Paukstelis PJ; Coon R; Madabusi L; Nowakowski J; Monzingo A; Robertus J; Lambowitz AM
    Mol Cell; 2005 Feb; 17(3):417-28. PubMed ID: 15694342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR Structure of the C-terminal domain of a tyrosyl-tRNA synthetase that functions in group I intron splicing.
    Paukstelis PJ; Chari N; Lambowitz AM; Hoffman D
    Biochemistry; 2011 May; 50(18):3816-26. PubMed ID: 21438536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.