These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18172768)

  • 1. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology.
    Gentile F; Ferrari M; Decuzzi P
    Ann Biomed Eng; 2008 Feb; 36(2):254-61. PubMed ID: 18172768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid exchange in the microcirculation.
    Michel CC
    J Physiol; 2004 Jun; 557(Pt 3):701-2. PubMed ID: 15020690
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of theoretical modeling in microcirculation research.
    Secomb TW; Beard DA; Frisbee JC; Smith NP; Pries AR
    Microcirculation; 2008 Nov; 15(8):693-8. PubMed ID: 18946803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of spatiotemporal dynamics of ligand-coated particle flow in targeted drug delivery processes.
    Goraya SA; Ding S; Miller RC; Arif MK; Kong H; Masud A
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2314533121. PubMed ID: 38776373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the rheological implications of adding particles in blood.
    Stephanou PS
    Rheol Acta; 2021; 60(10):603-616. PubMed ID: 34334825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-Exclusion Particle Separation Driven by Micro-Flows in a Quasi-Spherical Droplet: Modelling and Experimental Results.
    Marinaro G; Riekel C; Gentile F
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials.
    Utembe W; Clewell H; Sanabria N; Doganis P; Gulumian M
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32610468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Self-Adaptation Ability of Zinc Oxide Nanoparticles Enables Reliable Cancer Treatments.
    Taylor Z; Marucho M
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32033506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative micro-Raman analysis of micro-particles in drug delivery.
    Di Mascolo D; Coclite A; Gentile F; Francardi M
    Nanoscale Adv; 2019 Apr; 1(4):1541-1552. PubMed ID: 31304459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling in cancer nanomedicine: a review.
    Dogra P; Butner JD; Chuang YL; Caserta S; Goel S; Brinker CJ; Cristini V; Wang Z
    Biomed Microdevices; 2019 Apr; 21(2):40. PubMed ID: 30949850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method.
    Tan J; Keller W; Sohrabi S; Yang J; Liu Y
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures.
    Gentile F; Ferrara L; Villani M; Bettelli M; Iannotta S; Zappettini A; Cesarelli M; Di Fabrizio E; Coppedè N
    Sci Rep; 2016 Jan; 6():18992. PubMed ID: 26753611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted nanotechnology for cancer imaging.
    Toy R; Bauer L; Hoimes C; Ghaghada KB; Karathanasis E
    Adv Drug Deliv Rev; 2014 Sep; 76():79-97. PubMed ID: 25116445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications.
    Coluccio ML; Gentile F; Francardi M; Perozziello G; Malara N; Candeloro P; Di Fabrizio E
    Sensors (Basel); 2014 Mar; 14(4):6056-83. PubMed ID: 24681672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications.
    Martinez JO; Brown BS; Quattrocchi N; Evangelopoulos M; Ferrari M; Tasciotti E
    Chin Sci Bull; 2012 Nov; 57(31):3961-3971. PubMed ID: 24587616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling.
    Moss DM; Siccardi M
    Br J Pharmacol; 2014 Sep; 171(17):3963-79. PubMed ID: 24467481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles.
    Toy R; Peiris PM; Ghaghada KB; Karathanasis E
    Nanomedicine (Lond); 2014 Jan; 9(1):121-34. PubMed ID: 24354814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics.
    Martinez JO; Chiappini C; Ziemys A; Faust AM; Kojic M; Liu X; Ferrari M; Tasciotti E
    Biomaterials; 2013 Nov; 34(33):8469-77. PubMed ID: 23911070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of size, shape and vessel geometry on nanoparticle distribution.
    Tan J; Shah S; Thomas A; Ou-Yang HD; Liu Y
    Microfluid Nanofluidics; 2013 Jan; 14(1-2):77-87. PubMed ID: 23554583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal in vivo imaging exposes the voyage of nanoparticles in tumor microcirculation.
    Toy R; Hayden E; Camann A; Berman Z; Vicente P; Tran E; Meyers J; Pansky J; Peiris PM; Wu H; Exner A; Wilson D; Ghaghada KB; Karathanasis E
    ACS Nano; 2013 Apr; 7(4):3118-29. PubMed ID: 23464827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.