BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18173112)

  • 1. [Conversion of polychlorophenols by laccases with 1-hydroxybenzotriazole as a mediator].
    Lisov AV; Pozhidaeva ZA; Stepanova ; Koroleva OV; Leont'evskiĭ AA
    Prikl Biokhim Mikrobiol; 2007; 43(6):691-4. PubMed ID: 18173112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens.
    Gaitan IJ; Medina SC; González JC; Rodríguez A; Espejo AJ; Osma JF; Sarria V; Alméciga-Díaz CJ; Sánchez OF
    Bioresour Technol; 2011 Feb; 102(3):3632-5. PubMed ID: 21115244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of pentachlorophenol and 2,4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis.
    Yin L; Shen Z; Niu J; Chen J; Duan Y
    Environ Sci Technol; 2010 Dec; 44(23):9117-22. PubMed ID: 21049990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative degradation of model lipids representative for main paper pulp lipophilic extractives by the laccase-mediator system.
    Molina S; Rencoret J; del Río JC; Lomascolo A; Record E; Martínez AT; Gutiérrez A
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):211-22. PubMed ID: 18563406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of phenanthrene by Trametes versicolor and its laccase.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2004 Jun; 42(2):94-8. PubMed ID: 15357301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase.
    Jeon JR; Murugesan K; Kim YM; Kim EJ; Chang YS
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):783-90. PubMed ID: 18987855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple.
    Hirai H; Shibata H; Kawai S; Nishida T
    FEMS Microbiol Lett; 2006 Dec; 265(1):56-9. PubMed ID: 17038050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalized chitosan and sodium alginate for the effective removal of recalcitrant organic pollutants.
    Thirumavalavan M
    Int J Biol Macromol; 2023 Jul; 243():125276. PubMed ID: 37301344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry.
    Marjasvaara A; Jänis J; Vainiotalo P
    J Mass Spectrom; 2008 Apr; 43(4):470-7. PubMed ID: 17975855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Laccase of the lignolytic fungus Trametes hirsuta: purification and characterization of the enzyme, and cloning and primary structure of the gene].
    Rebrikov DV; Stepanova EV; Koroleva OV; Budarina ZhI; Zakharova MV; Iurkova TV; Solonin AS; Belova OV; Pozhidaeva ZA; Leont'evskiĭ AA
    Prikl Biokhim Mikrobiol; 2006; 42(6):645-53. PubMed ID: 17168293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective C-4 aerobic oxidation of catechin derivatives catalyzed by the Trametes villosa laccase/1-hydroxybenzotriazole system: synthetic and mechanistic aspects.
    Bernini R; Crisante F; Gentili P; Morana F; Pierini M; Piras M
    J Org Chem; 2011 Feb; 76(3):820-32. PubMed ID: 21204551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility.
    Nugroho Prasetyo E; Kudanga T; Østergaard L; Rencoret J; Gutiérrez A; del Río JC; Ignacio Santos J; Nieto L; Jiménez-Barbero J; Martínez AT; Li J; Gellerstedt G; Lepifre S; Silva C; Kim SY; Cavaco-Paulo A; Seljebakken Klausen B; Lutnaes BF; Nyanhongo GS; Guebitz GM
    Bioresour Technol; 2010 Jul; 101(14):5054-62. PubMed ID: 20176477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand trametes species in contaminated field soils.
    Ford CI; Walter M; Northcott GL; Di HJ; Cameron KC; Trower T
    J Environ Qual; 2007; 36(6):1749-59. PubMed ID: 17965377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition.
    Tai C; Jiang G
    Chemosphere; 2005 Apr; 59(3):321-6. PubMed ID: 15763084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pentachlorophenol dechlorination by an acidogenic sludge.
    Mun CH; He J; Ng WJ
    Water Res; 2008 Aug; 42(14):3789-98. PubMed ID: 18691730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62.
    González T; Terrón MC; Yagüe S; Junca H; Carbajo JM; Zapico EJ; Silva R; Arana-Cuenca A; Téllez A; González AE
    Res Microbiol; 2008 Mar; 159(2):103-9. PubMed ID: 18248962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite.
    Hu X; Zhao X; Hwang HM
    Chemosphere; 2007 Jan; 66(9):1618-26. PubMed ID: 16979219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Laccase of Lac 2 from the White Rot Fungus
    Zhou Z; Li R; Ng TB; Lai Y; Yang J; Ye X
    Toxins (Basel); 2020 Jul; 12(8):. PubMed ID: 32727016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds.
    Johannes C; Majcherczyk A; Hüttermann A
    Appl Microbiol Biotechnol; 1996 Oct; 46(3):313-7. PubMed ID: 8933845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.