These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18173654)

  • 1. Measuring the velocity of fluorescently labelled red blood cells with a keyhole tracking algorithm.
    Reyes-Aldasoro CC; Akerman S; Tozer GM
    J Microsc; 2008 Jan; 229(Pt 1):162-73. PubMed ID: 18173654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of red blood cell velocity by video shuttering and image analysis.
    Parthasarathi AA; Japee SA; Pittman RN
    Ann Biomed Eng; 1999; 27(3):313-25. PubMed ID: 10374724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation.
    Wu CC; Zhang G; Huang TC; Lin KP
    Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microflow of fluorescently labelled red blood cells in tumours expressing single isoforms of VEGF and their response to vascular targeting agents.
    Akerman S; Reyes-Aldasoro CC; Fisher M; Pettyjohn KL; Björndahl MA; Evans H; Tozer GM
    Med Eng Phys; 2011 Sep; 33(7):805-9. PubMed ID: 20933455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single particle tracking across sequences of microscopical images: application to platelet adhesion under flow.
    Machin M; Santomaso A; Mazzucato M; Cozzi MR; Battiston M; De Marco L; Canu P
    Ann Biomed Eng; 2006 May; 34(5):833-46. PubMed ID: 16708268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system.
    Ishikawa M; Sekizuka E; Shimizu K; Yamaguchi N; Kawase T
    Microvasc Res; 1998 Nov; 56(3):166-72. PubMed ID: 9828154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of cochlear blood flow: intravital fluorescence microscopy.
    Prazma J; Carrasco VN; Garrett CG; Pillsbury HC
    Hear Res; 1989 Nov; 42(2-3):229-36. PubMed ID: 2514176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):507-15. PubMed ID: 16147467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravital video microscopy measurements of retinal blood flow in mice.
    Harris NR; Watts MN; Leskova W
    J Vis Exp; 2013 Dec; (82):51110. PubMed ID: 24429840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia.
    Dewhirst MW; Ong ET; Braun RD; Smith B; Klitzman B; Evans SM; Wilson D
    Br J Cancer; 1999 Apr; 79(11-12):1717-22. PubMed ID: 10206282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver microcirculation analysis by red blood cell motion modeling in intravital microscopy images.
    Kamoun WS; Schmugge SJ; Kraftchick JP; Clemens MG; Shin MC
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):162-70. PubMed ID: 18232358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel diameter measurement from intravital microscopy.
    Lee J; Jirapatnakul AC; Reeves AP; Crowe WE; Sarelius IH
    Ann Biomed Eng; 2009 May; 37(5):913-26. PubMed ID: 19280342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative fluorescence angiography for neurosurgical interventions.
    Weichelt C; Duscha P; Steinmeier R; Meyer T; Kuß J; Cimalla P; Kirsch M; Sobottka SB; Koch E; Schackert G; Morgenstern U
    Biomed Tech (Berl); 2013 Jun; 58(3):269-79. PubMed ID: 23740655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking leukocytes in vivo with shape and size constrained active contours.
    Ray N; Acton ST; Ley K
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1222-35. PubMed ID: 12585704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image correlation method for measuring blood flow velocity in microcirculation: correlation 'window' simulation and in vivo image analysis.
    Tsukada K; Minamitani H; Sekizuka E; Oshio C
    Physiol Meas; 2000 Nov; 21(4):459-71. PubMed ID: 11110244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data.
    Deneux T; Takerkart S; Grinvald A; Masson GS; Vanzetta I
    Neuroimage; 2012 Feb; 59(3):2569-88. PubMed ID: 21925275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes.
    Debeir O; Van Ham P; Kiss R; Decaestecker C
    IEEE Trans Med Imaging; 2005 Jun; 24(6):697-711. PubMed ID: 15957594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic parameters in blood vessels in choroidal melanoma xenografts and rat choroid.
    Braun RD; Abbas A; Bukhari SO; Wilson W
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):3045-52. PubMed ID: 12202528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-image particle tracking velocimetry of the microcirculation using fluorescent nanoparticles.
    Ravnic DJ; Zhang YZ; Tsuda A; Pratt JP; Huss HT; Mentzer SJ
    Microvasc Res; 2006; 72(1-2):27-33. PubMed ID: 16806290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.