These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 18174112)

  • 1. Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London.
    Cauchemez S; Ferguson NM
    J R Soc Interface; 2008 Aug; 5(25):885-97. PubMed ID: 18174112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the consequences of measles-induced immune modulation for whooping cough epidemiology.
    Noori N; Rohani P
    Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180270. PubMed ID: 31056052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting critical slowing down in high-dimensional epidemiological systems.
    Brett T; Ajelli M; Liu QH; Krauland MG; Grefenstette JJ; van Panhuis WG; Vespignani A; Drake JM; Rohani P
    PLoS Comput Biol; 2020 Mar; 16(3):e1007679. PubMed ID: 32150536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Likelihood-based estimation and prediction for a measles outbreak in Samoa.
    Wu D; Petousis-Harris H; Paynter J; Suresh V; Maclaren OJ
    Infect Dis Model; 2023 Mar; 8(1):212-227. PubMed ID: 36824221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model.
    Dukic V; Lopes HF; Polson NG
    J Am Stat Assoc; 2012; 107(500):1410-1426. PubMed ID: 37583443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COVID-19 multiwaves as multiphase percolation: a general N-sigmoidal equation to model the spread.
    El Aferni A; Guettari M; Hamdouni A
    Eur Phys J Plus; 2023; 138(5):393. PubMed ID: 37192840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventive measures focused on the urban-rural interface protect rural food-producing communities from SARS-CoV-2.
    Polo G; Soler-Tovar D; Villamil-Jiménez LC; Mera C
    Biomedica; 2022 Oct; 42(Sp. 2):32-39. PubMed ID: 36322549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-type branching process model for epidemics with application to COVID-19.
    Laha AK; Majumdar S
    Stoch Environ Res Risk Assess; 2023; 37(1):305-325. PubMed ID: 36092539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference for epidemic models with time-varying infection rates: Tracking the dynamics of oak processionary moth in the UK.
    Wadkin LE; Branson J; Hoppit A; Parker NG; Golightly A; Baggaley AW
    Ecol Evol; 2022 May; 12(5):e8871. PubMed ID: 35509609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning forecasting using time-varying parameters of the SIRD model for Covid-19.
    Bousquet A; Conrad WH; Sadat SO; Vardanyan N; Hong Y
    Sci Rep; 2022 Feb; 12(1):3030. PubMed ID: 35194090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast estimation of time-varying infectious disease transmission rates.
    Jagan M; deJonge MS; Krylova O; Earn DJD
    PLoS Comput Biol; 2020 Sep; 16(9):e1008124. PubMed ID: 32956345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-parametric modeling of SARS-CoV-2 transmission using tests, cases, deaths, and seroprevalence data.
    Bayer D; Goldstein IH; Fintzi J; Lumbard K; Ricotta E; Warner S; Busch LM; Strich JR; Chertow DS; Parker DM; Boden-Albala B; Dratch A; Chhuon R; Quick N; Zahn M; Minin VM
    ArXiv; 2023 Mar; ():. PubMed ID: 32908946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticipating future learning affects current control decisions: A comparison between passive and active adaptive management in an epidemiological setting.
    Atkins BD; Jewell CP; Runge MC; Ferrari MJ; Shea K; Probert WJM; Tildesley MJ
    J Theor Biol; 2020 Dec; 506():110380. PubMed ID: 32698028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter identification for a stochastic SEIRS epidemic model: case study influenza.
    Mummert A; Otunuga OM
    J Math Biol; 2019 Jul; 79(2):705-729. PubMed ID: 31062075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China.
    Oidtman RJ; Lai S; Huang Z; Yang J; Siraj AS; Reiner RC; Tatem AJ; Perkins TA; Yu H
    Nat Commun; 2019 Mar; 10(1):1148. PubMed ID: 30850598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data.
    Fintzi J; Cui X; Wakefield J; Minin VN
    J Comput Graph Stat; 2017; 26(4):918-929. PubMed ID: 30515026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the age-specificity of measles transmissions during 2009-2016 in Southern China.
    Chong KC; Hu P; Lau S; Jia KM; Liang W; Wang MH; Zee BCY; Sun R; Zheng H
    PLoS One; 2018; 13(10):e0205339. PubMed ID: 30296273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State estimators for some epidemiological systems.
    Iggidr A; Souza MO
    J Math Biol; 2019 Jan; 78(1-2):225-256. PubMed ID: 30032315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of epidemiological parameters from household stratified data.
    Walker JN; Ross JV; Black AJ
    PLoS One; 2017; 12(10):e0185910. PubMed ID: 29045456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble approach to predicting the impact of vaccination on rotavirus disease in Niger.
    Park J; Goldstein J; Haran M; Ferrari M
    Vaccine; 2017 Oct; 35(43):5835-5841. PubMed ID: 28941619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.