These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 18174114)

  • 21. [Technological advances in neurorehabilitation].
    Gutiérrez-Martínez J; Núñez-Gaona MA; Carrillo-Mora P
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S8-23. PubMed ID: 25264802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option?
    Volpe BT; Krebs HI; Hogan N
    Curr Opin Neurol; 2001 Dec; 14(6):745-52. PubMed ID: 11723383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.
    Kadivar Z; Sullivan JL; Eng DP; Pehlivan AU; O'Malley MK; Yozbatiran N; Francisco GE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975429. PubMed ID: 22275630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A survey on robotic devices for upper limb rehabilitation.
    Maciejasz P; Eschweiler J; Gerlach-Hahn K; Jansen-Troy A; Leonhardt S
    J Neuroeng Rehabil; 2014 Jan; 11():3. PubMed ID: 24401110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.
    Hesse S; Schmidt H; Werner C; Bardeleben A
    Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of robots in stroke rehabilitation: A narrative review.
    Weber LM; Stein J
    NeuroRehabilitation; 2018; 43(1):99-110. PubMed ID: 30056437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions.
    Jayaraman A; Burt S; Rymer WZ
    Pediatr Phys Ther; 2017 Jul; 29 Suppl 3():S48-S56. PubMed ID: 28654477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
    Hussain S; Jamwal PK; Ghayesh MH
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Portable neurorobotics for the severely affected arm in chronic stroke: a case study.
    Page SJ; Hermann VH; Levine PG; Lewis E; Stein J; DePeel J
    J Neurol Phys Ther; 2011 Mar; 35(1):41-6. PubMed ID: 21475083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.
    Brookes J; Kuznecovs M; Kanakis M; Grigals A; Narvidas M; Gallagher J; Levesley M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():676-681. PubMed ID: 28813898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy.
    Scott SH; Dukelow SP
    J Rehabil Res Dev; 2011; 48(4):335-53. PubMed ID: 21674387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent trends for practical rehabilitation robotics, current challenges and the future.
    Yakub F; Md Khudzari AZ; Mori Y
    Int J Rehabil Res; 2014 Mar; 37(1):9-21. PubMed ID: 24126254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. What's new in new technologies for upper extremity rehabilitation?
    Brochard S; Robertson J; Médée B; Rémy-Néris O
    Curr Opin Neurol; 2010 Dec; 23(6):683-7. PubMed ID: 20852420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.
    Oña ED; Cano-de la Cuerda R; Sánchez-Herrera P; Balaguer C; Jardón A
    J Healthc Eng; 2018; 2018():9758939. PubMed ID: 29707189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational model of human-robot load sharing during robot-assisted arm movement training after stroke.
    Reinkensmeyer DJ; Wolbrecht E; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4019-23. PubMed ID: 18002881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in the understanding and treatment of stroke impairment using robotic devices.
    Hidler J; Nichols D; Pelliccio M; Brady K
    Top Stroke Rehabil; 2005; 12(2):22-35. PubMed ID: 15940582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.
    Bergamasco M; Frisoli A; Fontana M; Loconsole C; Leonardis D; Troncossi M; Foumashi MM; Parenti-Castelli V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975377. PubMed ID: 22275581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.
    Sucar L; Luis R; Leder R; Hernandez J; Sanchez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3690-3. PubMed ID: 21096856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.