These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18174226)

  • 21. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.
    Palioura S; Sherrer RL; Steitz TA; Söll D; Simonovic M
    Science; 2009 Jul; 325(5938):321-5. PubMed ID: 19608919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis.
    French RL; Gupta N; Copeland PR; Simonović M
    J Biol Chem; 2014 Oct; 289(42):28783-94. PubMed ID: 25190812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decameric SelA•tRNA(Sec) ring structure reveals mechanism of bacterial selenocysteine formation.
    Itoh Y; Bröcker MJ; Sekine S; Hammond G; Suetsugu S; Söll D; Yokoyama S
    Science; 2013 Apr; 340(6128):75-8. PubMed ID: 23559248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea.
    Atkinson GC; Hauryliuk V; Tenson T
    BMC Evol Biol; 2011 Jan; 11():22. PubMed ID: 21255425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phosphofructokinase-B (MJ0406) from Methanocaldococcus jannaschii represents a nucleoside kinase with a broad substrate specificity.
    Hansen T; Arnfors L; Ladenstein R; Schönheit P
    Extremophiles; 2007 Jan; 11(1):105-14. PubMed ID: 17021658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser).
    Baron C; Westhof E; Böck A; Giegé R
    J Mol Biol; 1993 May; 231(2):274-92. PubMed ID: 8510147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14.
    Menezes S; Gaston KW; Krivos KL; Apolinario EE; Reich NO; Sowers KR; Limbach PA; Perona JJ
    Nucleic Acids Res; 2011 Sep; 39(17):7641-55. PubMed ID: 21693558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii.
    Rother M; Wilting R; Commans S; Böck A
    J Mol Biol; 2000 Jun; 299(2):351-8. PubMed ID: 10860743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
    Mukai T; Crnković A; Umehara T; Ivanova NN; Kyrpides NC; Söll D
    mBio; 2017 May; 8(3):. PubMed ID: 28487430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii.
    Zhang F; Hu M; Tian G; Zhang P; Finley D; Jeffrey PD; Shi Y
    Mol Cell; 2009 May; 34(4):473-84. PubMed ID: 19481527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new use for a familiar fold: the X-ray crystal structure of GTP-bound GTP cyclohydrolase III from Methanocaldococcus jannaschii reveals a two metal ion catalytic mechanism.
    Morrison SD; Roberts SA; Zegeer AM; Montfort WR; Bandarian V
    Biochemistry; 2008 Jan; 47(1):230-42. PubMed ID: 18052207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity evolution of the ADP-dependent sugar kinase family: in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii.
    Merino F; Guixé V
    FEBS J; 2008 Aug; 275(16):4033-44. PubMed ID: 18625008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pGp as the main product of bovine tRNA kinase.
    Mizutani T; Osaka T; Ito Y; Kanou M; Usui T; Sone Y; Totsuka T
    Mol Biol Rep; 2002 Sep; 29(3):293-300. PubMed ID: 12463422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and catalytic mechanism of eukaryotic selenocysteine synthase.
    Ganichkin OM; Xu XM; Carlson BA; Mix H; Hatfield DL; Gladyshev VN; Wahl MC
    J Biol Chem; 2008 Feb; 283(9):5849-65. PubMed ID: 18093968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline.
    Christian T; Evilia C; Hou YM
    Biochemistry; 2006 Jun; 45(24):7463-73. PubMed ID: 16768442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution and classification of P-loop kinases and related proteins.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2003 Oct; 333(4):781-815. PubMed ID: 14568537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii.
    Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL
    Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis.
    Palioura S; Herkel J; Simonović M; Lohse AW; Söll D
    Biol Chem; 2010 Jul; 391(7):771-6. PubMed ID: 20623998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.
    Itoh Y; Bröcker MJ; Sekine S; Söll D; Yokoyama S
    J Mol Biol; 2014 Apr; 426(8):1723-35. PubMed ID: 24456689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.