BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18175118)

  • 1. Formal analysis of resonance entrainment by central pattern generator.
    Futakata Y; Iwasaki T
    J Math Biol; 2008 Aug; 57(2):183-207. PubMed ID: 18175118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance.
    Iwasaki T; Zheng M
    Biol Cybern; 2006 Apr; 94(4):245-61. PubMed ID: 16404611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation study on central pattern generator: from biology to engineering.
    Zhang D; Zhu K
    Int J Neural Syst; 2006 Dec; 16(6):405-22. PubMed ID: 17285687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory feedback in a half-center oscillator model.
    Simoni MF; DeWeerth SP
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):193-204. PubMed ID: 17278576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entrainment, instability, quasi-periodicity, and chaos in a compound neural oscillator.
    Matsugu M; Duffin J; Poon CS
    J Comput Neurosci; 1998 Mar; 5(1):35-51. PubMed ID: 9540048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired design strategies for central pattern generator control in modular robotics.
    Herrero-Carrón F; Rodríguez FB; Varona P
    Bioinspir Biomim; 2011 Mar; 6(1):016006. PubMed ID: 21335644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey on CPG-inspired control models and system implementation.
    Yu J; Tan M; Chen J; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):441-56. PubMed ID: 24807442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological clockwork underlying adaptive rhythmic movements.
    Iwasaki T; Chen J; Friesen WO
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):978-83. PubMed ID: 24395788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalized locomotion CPG architecture based on oscillatory building blocks.
    Yang Z; França FM
    Biol Cybern; 2003 Jul; 89(1):34-42. PubMed ID: 12836031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariable Harmonic Balance for Central Pattern Generators.
    Iwasaki T
    Automatica (Oxf); 2008 Dec; 44(12):3061-3069. PubMed ID: 19956774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback.
    Bryden J; Cohen N
    Biol Cybern; 2008 Apr; 98(4):339-51. PubMed ID: 18350313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered gravity highlights central pattern generator mechanisms.
    White O; Bleyenheuft Y; Ronsse R; Smith AM; Thonnard JL; Lefèvre P
    J Neurophysiol; 2008 Nov; 100(5):2819-24. PubMed ID: 18650309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional variation of bursting properties in a silicon-neuron half-center oscillator.
    Simoni MF; DeWeerth SP
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):281-9. PubMed ID: 17009487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal correlations in stochastic models of double bursting during simulated locomotion.
    Boothe DL; Cohen AH; Troyer TW
    J Neurophysiol; 2006 Mar; 95(3):1556-70. PubMed ID: 16354728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of resonance tuning with positive versus negative sensory feedback.
    Williams CA; DeWeerth SP
    Biol Cybern; 2007 Jun; 96(6):603-14. PubMed ID: 17404751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entrainment of randomly coupled oscillator networks by a pacemaker.
    Kori H; Mikhailov AS
    Phys Rev Lett; 2004 Dec; 93(25):254101. PubMed ID: 15697897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariable harmonic balance analysis of the neuronal oscillator for leech swimming.
    Chen Z; Zheng M; Friesen WO; Iwasaki T
    J Comput Neurosci; 2008 Dec; 25(3):583-606. PubMed ID: 18663565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling the neural and physical dynamics in rhythmic movements.
    Hatsopoulos NG
    Neural Comput; 1996 Apr; 8(3):567-81. PubMed ID: 8868568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.