BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18175118)

  • 21. Mathematical analysis and simulations of the neural circuit for locomotion in lampreys.
    Zhaoping L; Lewis A; Scarpetta S
    Phys Rev Lett; 2004 May; 92(19):198106. PubMed ID: 15169452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roles of ascending sensory signals and top-down central control in the entrainment of a locomotor CPG.
    Codianni MG; Daun S; Rubin JE
    Biol Cybern; 2020 Dec; 114(6):533-555. PubMed ID: 33289879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring a type of central pattern generator based on Hindmarsh-Rose model: from theory to application.
    Zhang D; Zhang Q; Zhu X
    Int J Neural Syst; 2015 Feb; 25(1):1450028. PubMed ID: 25146328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General principles of rhythmogenesis in central pattern generator networks.
    Harris-Warrick RM
    Prog Brain Res; 2010; 187():213-22. PubMed ID: 21111210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relative roles of feedforward and feedback in the control of rhythmic movements.
    Kuo AD
    Motor Control; 2002 Apr; 6(2):129-45. PubMed ID: 12122223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Entrainment ranges of forced phase oscillators.
    Previte JP; Sheils N; Hoffman KA; Kiemel T; Tytell ED
    J Math Biol; 2011 Apr; 62(4):589-603. PubMed ID: 20502920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergence of adaptability to time delay in bipedal locomotion.
    Ohgane K; Ei S; Kazutoshi K; Ohtsuki T
    Biol Cybern; 2004 Feb; 90(2):125-32. PubMed ID: 14999479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A synaptic input portal for a mapped clock oscillator model of neuronal electrical rhythmic activity.
    Zariffa J; Ebden M; Bardakjian BL
    J Neural Eng; 2004 Sep; 1(3):158-64. PubMed ID: 15876635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sparsely synchronized neuronal oscillations.
    Brunel N; Hakim V
    Chaos; 2008 Mar; 18(1):015113. PubMed ID: 18377094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chaotic frequency scaling in a coupled oscillator model for free rhythmic actions.
    Raftery A; Cusumano J; Sternad D
    Neural Comput; 2008 Jan; 20(1):205-26. PubMed ID: 18045006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oscillatory neural networks.
    Selverston AI; Moulins M
    Annu Rev Physiol; 1985; 47():29-48. PubMed ID: 2986532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Symmetry in locomotor central pattern generators and animal gaits.
    Golubitsky M; Stewart I; Buono PL; Collins JJ
    Nature; 1999 Oct; 401(6754):693-5. PubMed ID: 10537106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spiking neuron model for synchronous flashing of fireflies.
    Kim D
    Biosystems; 2004; 76(1-3):7-20. PubMed ID: 15351126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed feedback as a means of control of noise-induced motion.
    Janson NB; Balanov AG; Schöll E
    Phys Rev Lett; 2004 Jul; 93(1):010601. PubMed ID: 15323962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.