These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 18175969)
41. A comparison of granules produced by high-shear and fluidized-bed granulation methods. Morin G; Briens L AAPS PharmSciTech; 2014 Aug; 15(4):1039-48. PubMed ID: 24839117 [TBL] [Abstract][Full Text] [Related]
42. End-point detection in a wet granulation process. Holm P; Schaefer T; Larsen C Pharm Dev Technol; 2001; 6(2):181-92. PubMed ID: 11416992 [TBL] [Abstract][Full Text] [Related]
43. Twin screw granulation: steps in granule growth. Dhenge RM; Cartwright JJ; Hounslow MJ; Salman AD Int J Pharm; 2012 Nov; 438(1-2):20-32. PubMed ID: 22960611 [TBL] [Abstract][Full Text] [Related]
44. Process control in a high shear mixer-granulator using wet mass consistency: the effect of formulation variables. Faure A; Grimsey IM; Rowe RC; York P; Cliff MJ J Pharm Sci; 1999 Feb; 88(2):191-5. PubMed ID: 9950637 [TBL] [Abstract][Full Text] [Related]
45. The effect of the physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach toward understanding high-shear wet granulation process. Part II. Granulation and granule properties. Li J; Tao L; Dali M; Buckley D; Gao J; Hubert M J Pharm Sci; 2011 Jan; 100(1):294-310. PubMed ID: 20575062 [TBL] [Abstract][Full Text] [Related]
46. Experimental investigation of granule size and shape dynamics in twin-screw granulation. Kumar A; Vercruysse J; Bellandi G; Gernaey KV; Vervaet C; Remon JP; De Beer T; Nopens I Int J Pharm; 2014 Nov; 475(1-2):485-95. PubMed ID: 25234863 [TBL] [Abstract][Full Text] [Related]
47. Mixing of low-dose cohesive drug and overcoming of pre-blending step using a new gentle-wing high-shear mixer granulator. Alsulays BB; Fayed MH; Alalaiwe A; Alshahrani SM; Alshetaili AS; Alshehri SM; Alanazi FK Drug Dev Ind Pharm; 2018 Sep; 44(9):1520-1527. PubMed ID: 29718720 [TBL] [Abstract][Full Text] [Related]
48. In-depth experimental analysis of pharmaceutical twin-screw wet granulation in view of detailed process understanding. Verstraeten M; Van Hauwermeiren D; Lee K; Turnbull N; Wilsdon D; Am Ende M; Doshi P; Vervaet C; Brouckaert D; Mortier STFC; Nopens I; Beer T Int J Pharm; 2017 Aug; 529(1-2):678-693. PubMed ID: 28720539 [TBL] [Abstract][Full Text] [Related]
49. Relationship between inhomogeneity phenomena and granule growth mechanisms in a high-shear mixer. van den Dries K; Vromans H Int J Pharm; 2002 Oct; 247(1-2):167-77. PubMed ID: 12429495 [TBL] [Abstract][Full Text] [Related]
50. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach. Watson NJ; Povey MJ; Reynolds GK; Xu BH; Ding Y Int J Pharm; 2014 Apr; 465(1-2):262-74. PubMed ID: 24491527 [TBL] [Abstract][Full Text] [Related]
51. Characteristics of residence time distribution in a continuous high shear mixer granulation using scraper rotation. Tomita Y; Takeuchi Y; Natsuyama S; Takeuchi H Int J Pharm; 2021 Aug; 605():120789. PubMed ID: 34116178 [TBL] [Abstract][Full Text] [Related]
52. Development of a novel compression tester and rheo-mechanical properties of wet-mass powder. I--Effect of kneading time on the rheo-mechanical properties. Watano S; Yoshikawa T; Osako Y; Tsuhari M Chem Pharm Bull (Tokyo); 2003 Jul; 51(7):747-50. PubMed ID: 12843577 [TBL] [Abstract][Full Text] [Related]
53. A priori performance prediction in pharmaceutical wet granulation: testing the applicability of the nucleation regime map to a formulation with a broad size distribution and dry binder addition. Kayrak-Talay D; Litster JD Int J Pharm; 2011 Oct; 418(2):254-64. PubMed ID: 21530625 [TBL] [Abstract][Full Text] [Related]
54. Predicting optimal wet granulation parameters for extrusion-spheronisation of pharmaceutical pellets using a mixer torque rheometer. Kuhs M; Moore J; Kollamaram G; Walker G; Croker D Int J Pharm; 2017 Jan; 517(1-2):19-24. PubMed ID: 27915006 [TBL] [Abstract][Full Text] [Related]
55. Mechanism of the formation of hollow spherical granules using a high shear granulator. Asada T; Nishikawa M; Ochiai Y; Noguchi S; Kimura SI; Iwao Y; Itai S Eur J Pharm Sci; 2018 May; 117():371-378. PubMed ID: 29524593 [TBL] [Abstract][Full Text] [Related]
56. Process analytical technology (PAT) approach to the formulation of thermosensitive protein-loaded pellets: Multi-point monitoring of temperature in a high-shear pelletization. Kristó K; Kovács O; Kelemen A; Lajkó F; Klivényi G; Jancsik B; Pintye-Hódi K; Regdon G Eur J Pharm Sci; 2016 Dec; 95():62-71. PubMed ID: 27577010 [TBL] [Abstract][Full Text] [Related]
57. Mechanistic basis for the effects of process parameters on quality attributes in high shear wet granulation. Badawy SI; Narang AS; LaMarche K; Subramanian G; Varia SA Int J Pharm; 2012 Dec; 439(1-2):324-33. PubMed ID: 22981985 [TBL] [Abstract][Full Text] [Related]
58. Real-Time Monitoring of Critical Quality Attributes during High-Shear Wet Granulation Process by Near-Infrared Spectroscopy Effect of Water Addition and Stirring Speed on Pharmaceutical Properties of the Granules. Koyanagi K; Ueno A; Sasaki T; Otsuka M Pharmaceuticals (Basel); 2022 Jul; 15(7):. PubMed ID: 35890120 [TBL] [Abstract][Full Text] [Related]
59. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Rantanen J; Wikström H; Turner R; Taylor LS Anal Chem; 2005 Jan; 77(2):556-63. PubMed ID: 15649053 [TBL] [Abstract][Full Text] [Related]
60. Scale-up of high shear granulation based on the internal stress measurement. Watano S; Okamoto T; Sato Y; Osako Y Chem Pharm Bull (Tokyo); 2005 Apr; 53(4):351-4. PubMed ID: 15802830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]