These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18176224)

  • 41. Histopathological findings of cleft palate in rat embryos induced by triamcinolone acetonide.
    Furukawa S; Usuda K; Abe M; Ogawa I
    J Vet Med Sci; 2004 Apr; 66(4):397-402. PubMed ID: 15133269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wnt11/Fgfr1b cross-talk modulates the fate of cells in palate development.
    Lee JM; Kim JY; Cho KW; Lee MJ; Cho SW; Kwak S; Cai J; Jung HS
    Dev Biol; 2008 Feb; 314(2):341-50. PubMed ID: 18191119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell Polarity and PAR Complex Likely to Be Involved in Dexamethasone-Induced Cleft Palate.
    Ma L; Shi B; Zheng Q
    J Craniofac Surg; 2018 Mar; 29(2):260-263. PubMed ID: 29065046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional role of transforming growth factor-beta type III receptor during palatal fusion.
    Nakajima A; Ito Y; Asano M; Maeno M; Iwata K; Mitsui N; Shimizu N; Cui XM; Shuler CF
    Dev Dyn; 2007 Mar; 236(3):791-801. PubMed ID: 17295310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Medial epithelial seam cell migration during palatal fusion.
    Logan SM; Benson MD
    J Cell Physiol; 2020 Feb; 235(2):1417-1424. PubMed ID: 31264714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesenchymal influences on epithelial differentiation in developing systems.
    Sharpe PM; Ferguson MW
    J Cell Sci Suppl; 1988; 10():195-230. PubMed ID: 3077937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice.
    Degitz SJ; Francis BM; Foley GL
    J Craniofac Genet Dev Biol; 1998; 18(2):88-99. PubMed ID: 9672841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular and Molecular Mechanisms of Palatogenesis.
    Lan Y; Xu J; Jiang R
    Curr Top Dev Biol; 2015; 115():59-84. PubMed ID: 26589921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Spatial and temporal changes of palatal cell proliferation and cell apoptosis of retinoic acid induced mouse cleft palate in different embryonic stages].
    Wang R; Liu B; Wang B; Cong W; Xiao J
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2008 Oct; 26(5):546-9. PubMed ID: 19007082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development.
    Ohki S; Oka K; Ogata K; Okuhara S; Rikitake M; Toda-Nakamura M; Tamura S; Ozaki M; Iseki S; Sakai T
    Front Physiol; 2020; 11():532. PubMed ID: 32581832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TGF-β Signaling and the Epithelial-Mesenchymal Transition during Palatal Fusion.
    Nakajima A; F Shuler C; Gulka AOD; Hanai JI
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TGF-beta1, FGF-2, and receptor mRNA expression in suture mesenchyme and dura versus underlying brain in fusing and nonfusing mouse cranial sutures.
    Gosain AK; Recinos RF; Agresti M; Khanna AK
    Plast Reconstr Surg; 2004 May; 113(6):1675-84. PubMed ID: 15114129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY
    J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Influence of 7-dehydrocholesterol reductase gene silencing on the fusion of mouse palatal shelves].
    Wenlin X; Cuizhu Z; Yan S; Yaoxiang X; Lingfa X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2015 Feb; 33(1):29-34. PubMed ID: 25872295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Runx1 is involved in the fusion of the primary and the secondary palatal shelves.
    Charoenchaikorn K; Yokomizo T; Rice DP; Honjo T; Matsuzaki K; Shintaku Y; Imai Y; Wakamatsu A; Takahashi S; Ito Y; Takano-Yamamoto T; Thesleff I; Yamamoto M; Yamashiro T
    Dev Biol; 2009 Feb; 326(2):392-402. PubMed ID: 19000669
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alterations in apoptosis and epithelial-mesenchymal transformation in an in vitro cleft palate model.
    Gurley JM; Wamsley MS; Sandell LJ
    Plast Reconstr Surg; 2004 Mar; 113(3):907-14. PubMed ID: 15108882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disruption of Hedgehog Signaling by Vismodegib Leads to Cleft Palate and Delayed Osteogenesis in Experimental Design.
    Zhang S; Wang C; Xie C; Lai Y; Wu D; Gan G; Chen W
    J Craniofac Surg; 2017 Sep; 28(6):1607-1614. PubMed ID: 28863112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling.
    Matsumura K; Taketomi T; Yoshizaki K; Arai S; Sanui T; Yoshiga D; Yoshimura A; Nakamura S
    Biochem Biophys Res Commun; 2011 Jan; 404(4):1076-82. PubMed ID: 21195053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice.
    Noda K; Mishina Y; Komatsu Y
    Dev Biol; 2016 Jul; 415(2):306-313. PubMed ID: 26116174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.