BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 1817688)

  • 21. Relationship between scalp potential and autonomic nervous activity during a mental arithmetic task.
    Yu X; Zhang J; Xie D; Wang J; Zhang C
    Auton Neurosci; 2009 Mar; 146(1-2):81-6. PubMed ID: 19171503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heart period variability of trained and untrained men at rest and during mental challenge.
    Boutcher SH; Nugent FW; McLaren PF; Weltman AL
    Psychophysiology; 1998 Jan; 35(1):16-22. PubMed ID: 9499702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute pain increases heart rate: differential mechanisms during rest and mental stress.
    Terkelsen AJ; Mølgaard H; Hansen J; Andersen OK; Jensen TS
    Auton Neurosci; 2005 Aug; 121(1-2):101-9. PubMed ID: 16081322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis.
    Schwerte T; Prem C; Mairösl A; Pelster B
    J Exp Biol; 2006 Mar; 209(Pt 6):1093-100. PubMed ID: 16513936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired activation of the baroreflex loop as early sign of sympathetic damage in diabetics with normal heart rate variability at rest.
    Weck M; Tank J; Baevski RM; Mölle A; Matthies K; Ploewka K
    Acta Med Austriaca; 1997; 24(5):175-9. PubMed ID: 9428943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive monitoring of the autonomic nervous system and hemodynamics of patients with blunt and penetrating trauma.
    Colombo J; Shoemaker WC; Belzberg H; Hatzakis G; Fathizadeh P; Demetriades D
    J Trauma; 2008 Dec; 65(6):1364-73. PubMed ID: 19077628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of mental and physical demands on heart rate variability during computer work.
    Garde AH; Laursen B; Jørgensen AH; Jensen BR
    Eur J Appl Physiol; 2002 Aug; 87(4-5):456-61. PubMed ID: 12172887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiovascular variability in major depressive disorder and effects of imipramine or mirtazapine (Org 3770).
    Tulen JH; Bruijn JA; de Man KJ; Pepplinkhuizen L; van den Meiracker AH; Man in 't Veld AJ
    J Clin Psychopharmacol; 1996 Apr; 16(2):135-45. PubMed ID: 8690829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual activation of cardiac sympathetic and parasympathetic components during conditioned fear to context in the rat.
    Carrive P
    Clin Exp Pharmacol Physiol; 2006 Dec; 33(12):1251-4. PubMed ID: 17184510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased heart rate variability during nondirective meditation.
    Nesvold A; Fagerland MW; Davanger S; Ellingsen Ø; Solberg EE; Holen A; Sevre K; Atar D
    Eur J Prev Cardiol; 2012 Aug; 19(4):773-80. PubMed ID: 21693507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Going beyond heart rate: autonomic space and cardiovascular assessment of mental workload.
    Backs RW
    Int J Aviat Psychol; 1995; 5(1):25-48. PubMed ID: 11541494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective quantification of the cardiac sympathetic and parasympathetic nervous systems by multisignal analysis of cardiorespiratory variability.
    Chen X; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H362-71. PubMed ID: 17993596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability.
    Zhong Y; Jan KM; Ju KH; Chon KH
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1475-83. PubMed ID: 16603701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of change in sympatho-vagal balance on heart rate and blood pressure variability in the foetal lamb.
    Metsälä T; Siimes A; Välimäki I
    Acta Physiol Scand; 1995 Jun; 154(2):85-92. PubMed ID: 7572224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of sympathetic modulation and sympatho-vagal interaction on heart rate variability in anaesthetized dogs.
    Hedman AE; Tahvanainen KU; Hartikainen JE; Hakumäki MO
    Acta Physiol Scand; 1995 Oct; 155(2):205-14. PubMed ID: 8669293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alpha7-nicotinic acetylcholine receptor subunit is not required for parasympathetic control of the heart in the mouse.
    Deck J; Bibevski S; Gnecchi-Ruscone T; Bellina V; Montano N; Dunlap ME
    Physiol Genomics; 2005 Jun; 22(1):86-92. PubMed ID: 15797970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest.
    Katona PG; McLean M; Dighton DH; Guz A
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1652-7. PubMed ID: 7107476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac vagal activity following three intensities of exercise in humans.
    Gladwell VF; Sandercock GR; Birch SL
    Clin Physiol Funct Imaging; 2010 Jan; 30(1):17-22. PubMed ID: 19744086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autonomic effects on the spectral analysis of heart rate variability after exercise.
    Ng J; Sundaram S; Kadish AH; Goldberger JJ
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1421-8. PubMed ID: 19648255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress.
    Langewitz W; Rüddel H; Schächinger H
    Am Heart J; 1994 Jan; 127(1):122-8. PubMed ID: 8273730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.