BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 18177043)

  • 1. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes.
    Miyashita M; Sunahara K; Nishikawa T; Uemura Y; Koumura N; Hara K; Mori A; Abe T; Suzuki E; Mori S
    J Am Chem Soc; 2008 Dec; 130(52):17874-81. PubMed ID: 19067515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer.
    Wang M; Moon SJ; Xu M; Chittibabu K; Wang P; Cevey-Ha NL; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Small; 2010 Jan; 6(2):319-24. PubMed ID: 19902434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells.
    Rühle S; Greenshtein M; Chen SG; Merson A; Pizem H; Sukenik CS; Cahen D; Zaban A
    J Phys Chem B; 2005 Oct; 109(40):18907-13. PubMed ID: 16853434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study.
    Kusama H; Orita H; Sugihara H
    Langmuir; 2008 Apr; 24(8):4411-9. PubMed ID: 18331067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of transport properties of spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells.
    Dualeh A; Moehl T; Nazeeruddin MK; Grätzel M
    ACS Nano; 2013 Mar; 7(3):2292-301. PubMed ID: 23444960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.
    Marinado T; Hagberg DP; Hedlund M; Edvinsson T; Johansson EM; Boschloo G; Rensmo H; Brinck T; Sun L; Hagfeldt A
    Phys Chem Chem Phys; 2009 Jan; 11(1):133-41. PubMed ID: 19081916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement.
    Neale NR; Kopidakis N; van de Lagemaat J; Grätzel M; Frank AJ
    J Phys Chem B; 2005 Dec; 109(49):23183-9. PubMed ID: 16375281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation.
    Pastore M; Angelis FD
    ACS Nano; 2010 Jan; 4(1):556-62. PubMed ID: 20020758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes.
    Hara K; Miyamoto K; Abe Y; Yanagida M
    J Phys Chem B; 2005 Dec; 109(50):23776-8. PubMed ID: 16375359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-enhancement mechanisms of an organic dye in high open-circuit voltage solid-state dye-sensitized solar cells.
    Jang SR; Zhu K; Ko MJ; Kim K; Kim C; Park NG; Frank AJ
    ACS Nano; 2011 Oct; 5(10):8267-74. PubMed ID: 21932767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the HOMO energy levels of organic dyes for dye-sensitized solar cells based on Br-/Br3- electrolytes.
    Teng C; Yang X; Li S; Cheng M; Hagfeldt A; Wu LZ; Sun L
    Chemistry; 2010 Nov; 16(44):13127-38. PubMed ID: 20922716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of number of benzodioxan-stilbazole-based ancillary ligands on dye packing, photovoltage and photocurrent in dye-sensitized solar cells.
    Cheema H; Islam A; Han L; El-Shafei A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11617-24. PubMed ID: 24911059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes.
    Peng B; Yang S; Li L; Cheng F; Chen J
    J Chem Phys; 2010 Jan; 132(3):034305. PubMed ID: 20095737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.