These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18177152)

  • 1. Reconciling the origin of the transient evoked ototacoustic emission in humans.
    Withnell RH; Hazlewood C; Knowlton A
    J Acoust Soc Am; 2008 Jan; 123(1):212-21. PubMed ID: 18177152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TEOAE amplitude growth, detectability, and response threshold in linear and nonlinear mode and in different time windows.
    Hoth S; Polzer M; Neumann K; Plinkert P
    Int J Audiol; 2007 Aug; 46(8):407-18. PubMed ID: 17654082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital subtraction method for transient evoked otoacoustic emission recording with ipsilateral noise suppression: an application to stimulus artifact reduction.
    Arslan RB; Ozdamar O; Ulgen Y
    Audiology; 2001; 40(2):55-62. PubMed ID: 11409763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous suppression of tone burst-evoked otoacoustic emissions--effect of level and presentation paradigm.
    Killan EC; Kapadia S
    Hear Res; 2006 Feb; 212(1-2):65-73. PubMed ID: 16324810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in transient-evoked otoacoustic emission levels with negative tympanometric peak pressure in infants and toddlers.
    Prieve BA; Calandruccio L; Fitzgerald T; Mazevski A; Georgantas LM
    Ear Hear; 2008 Aug; 29(4):533-42. PubMed ID: 18469719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Derived nonlinear' versus 'linear' click-evoked otoacoustic emissions.
    Ravazzani P; Tognola G; Grandori F
    Audiology; 1996; 35(2):73-86. PubMed ID: 8864254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of DPOAEs in the guinea pig.
    Withnell RH; Shaffer LA; Talmadge CL
    Hear Res; 2003 Apr; 178(1-2):106-17. PubMed ID: 12684183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model.
    Sisto R; Moleti A
    J Acoust Soc Am; 2008 Nov; 124(5):2995-3008. PubMed ID: 19045787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study.
    Bolay H; Bayazit YA; Gündüz B; Ugur AK; Akçali D; Altunyay S; Ilica S; Babacan A
    Cephalalgia; 2008 Apr; 28(4):309-17. PubMed ID: 18279433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions.
    van Zyl A; Swanepoel D; Hall JW
    Hear Res; 2009 Aug; 254(1-2):77-81. PubMed ID: 19401226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission.
    Withnell RH; McKinley S
    J Acoust Soc Am; 2005 Jan; 117(1):281-91. PubMed ID: 15704421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics.
    Meenderink SW; Narins PM
    Hear Res; 2006 Oct; 220(1-2):67-75. PubMed ID: 16942850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in transient-evoked otoacoustic emissions in the first month of life.
    Prieve BA; Hancur-Bucci CA; Preston JL
    Ear Hear; 2009 Jun; 30(3):330-9. PubMed ID: 19322090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Ear Asymmetries in middle-ear, cochlear, and brainstem responses in human infants" [J. Acoust. Soc. Am. 123, 1504-1512].
    Sininger Y; Cone B
    J Acoust Soc Am; 2008 Sep; 124(3):1401-3. PubMed ID: 19045630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency.
    Notaro G; Al-Maamury AM; Moleti A; Sisto R
    J Acoust Soc Am; 2007 Dec; 122(6):3576-85. PubMed ID: 18247765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation into the relationship between input-output nonlinearities and rate-induced nonlinearities of click-evoked otoacoustic emissions recorded using maximum length sequences.
    Lineton B; Thornton AR; Baker VJ
    Hear Res; 2006 Sep; 219(1-2):24-35. PubMed ID: 16839721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.