BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18177605)

  • 21. On the enigma of pain and hyperalgesia: A molecular perspective.
    Haddad JJ
    Biochem Biophys Res Commun; 2007 Feb; 353(2):217-24. PubMed ID: 17184730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peripherally acting opioids and clinical implications for pain control.
    Sehgal N; Smith HS; Manchikanti L
    Pain Physician; 2011; 14(3):249-58. PubMed ID: 21587328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antinociception by neutrophil-derived opioid peptides in noninflamed tissue--role of hypertonicity and the perineurium.
    Rittner HL; Hackel D; Yamdeu RS; Mousa SA; Stein C; Schäfer M; Brack A
    Brain Behav Immun; 2009 May; 23(4):548-57. PubMed ID: 19233260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.
    Rittner HL; Hackel D; Voigt P; Mousa S; Stolz A; Labuz D; Schäfer M; Schaefer M; Stein C; Brack A
    PLoS Pathog; 2009 Apr; 5(4):e1000362. PubMed ID: 19343210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endogenous opioid-mediated analgesia is dependent on adaptive T cell response in mice.
    Boué J; Blanpied C; Brousset P; Vergnolle N; Dietrich G
    J Immunol; 2011 May; 186(9):5078-84. PubMed ID: 21422247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells.
    Brack A; Rittner HL; Machelska H; Leder K; Mousa SA; Schäfer M; Stein C
    Pain; 2004 Dec; 112(3):229-238. PubMed ID: 15561377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opioid peptide-expressing leukocytes: identification, recruitment, and simultaneously increasing inhibition of inflammatory pain.
    Rittner HL; Brack A; Machelska H; Mousa SA; Bauer M; Schäfer M; Stein C
    Anesthesiology; 2001 Aug; 95(2):500-8. PubMed ID: 11506126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immune conditions associated with CD4+ T effector-induced opioid release and analgesia.
    Boué J; Blanpied C; Djata-Cabral M; Pelletier L; Vergnolle N; Dietrich G
    Pain; 2012 Feb; 153(2):485-493. PubMed ID: 22188867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain.
    Mousa SA; Shaqura M; Brendl U; Al-Khrasani M; Fürst S; Schäfer M
    Brain Behav Immun; 2010 Nov; 24(8):1310-23. PubMed ID: 20600813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different mechanisms underlie the analgesic actions of paracetamol and dipyrone in a rat model of inflammatory pain.
    Rezende RM; França DS; Menezes GB; dos Reis WG; Bakhle YS; Francischi JN
    Br J Pharmacol; 2008 Feb; 153(4):760-8. PubMed ID: 18157167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment with ketanserin produces opioid-mediated hypoalgesia in the late phase of carrageenan-induced inflammatory hyperalgesia in rats.
    Huang J; Cai Q; Chen Y; Hong Y
    Brain Res; 2009 Dec; 1303():39-47. PubMed ID: 19782054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Pain and the immune system: friend or foe?].
    Rittner HL; Brack A; Stein C
    Anaesthesist; 2002 May; 51(5):351-8. PubMed ID: 12125305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization Via a NMDA-dependent process.
    Le Roy C; Laboureyras E; Gavello-Baudy S; Chateauraynaud J; Laulin JP; Simonnet G
    J Pain; 2011 Oct; 12(10):1069-79. PubMed ID: 21723199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia.
    Hutchinson MR; Coats BD; Lewis SS; Zhang Y; Sprunger DB; Rezvani N; Baker EM; Jekich BM; Wieseler JL; Somogyi AA; Martin D; Poole S; Judd CM; Maier SF; Watkins LR
    Brain Behav Immun; 2008 Nov; 22(8):1178-89. PubMed ID: 18599265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local immune response to tissue and nerve injury mediates opioid antinociception.
    Sharp BM; Ennis M
    Brain Behav Immun; 2010 Oct; 24(7):1043-4. PubMed ID: 20600812
    [No Abstract]   [Full Text] [Related]  

  • 36. Corticotropin-releasing factor in antinociception and inflammation.
    Schäfer M; Mousa SA; Stein C
    Eur J Pharmacol; 1997 Mar; 323(1):1-10. PubMed ID: 9105870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pro-algesic versus analgesic actions of immune cells.
    Rittner HL; Brack A; Stein C
    Curr Opin Anaesthesiol; 2003 Oct; 16(5):527-33. PubMed ID: 17021507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia.
    DeLeo JA; Tanga FY; Tawfik VL
    Neuroscientist; 2004 Feb; 10(1):40-52. PubMed ID: 14987447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats.
    Rivat C; Laboureyras E; Laulin JP; Le Roy C; Richebé P; Simonnet G
    Neuropsychopharmacology; 2007 Oct; 32(10):2217-28. PubMed ID: 17299508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia.
    Sun J; Chen SR; Chen H; Pan HL
    J Physiol; 2019 Mar; 597(6):1661-1675. PubMed ID: 30578671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.