BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18177690)

  • 1. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.
    Wajih N; Owen J; Wallin R
    Thromb Res; 2008; 122(3):405-10. PubMed ID: 18177690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle.
    Wajih N; Hutson SM; Owen J; Wallin R
    J Biol Chem; 2005 Sep; 280(36):31603-7. PubMed ID: 16030016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors.
    Wallin R; Wajih N; Hutson SM
    Vitam Horm; 2008; 78():227-46. PubMed ID: 18374197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. siRNA silencing of calumenin enhances functional factor IX production.
    Wajih N; Hutson SM; Wallin R
    Blood; 2006 Dec; 108(12):3757-60. PubMed ID: 16902154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced functional recombinant factor IX production by human embryonic kidney cells engineered to overexpress VKORC1.
    Pakdaman SF; Vatandoost J; Bos MHA
    Biotechnol Prog; 2020 Mar; 36(2):e2938. PubMed ID: 31677255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of bromadiolone resistance in a danish strain of Norway rats, Rattus norvegicus, by hepatic gene expression profiling of genes involved in vitamin K-dependent gamma-carboxylation.
    Markussen MD; Heiberg AC; Fredholm M; Kristensen M
    J Biochem Mol Toxicol; 2007; 21(6):373-81. PubMed ID: 17994578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo functional characterization of bovine vitamin K-dependent gamma-carboxylase expressed in Chinese hamster ovary cells.
    Rehemtulla A; Roth DA; Wasley LC; Kuliopulos A; Walsh CT; Furie B; Furie BC; Kaufman RJ
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4611-5. PubMed ID: 8506307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of the human gamma-carboxylase and a gamma-carboxylase-associated protein from factor IX-expressing mammalian cells.
    Lingenfelter SE; Berkner KL
    Biochemistry; 1996 Jun; 35(25):8234-43. PubMed ID: 8679578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced gamma-carboxylation of recombinant factor X using a chimeric construct containing the prothrombin propeptide.
    Camire RM; Larson PJ; Stafford DW; High KA
    Biochemistry; 2000 Nov; 39(46):14322-9. PubMed ID: 11087381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular mechanism for genetic warfarin resistance in the rat.
    Wallin R; Hutson SM; Cain D; Sweatt A; Sane DC
    FASEB J; 2001 Nov; 15(13):2542-4. PubMed ID: 11641264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. r-VKORC1 expression in factor IX BHK cells increases the extent of factor IX carboxylation but is limited by saturation of another carboxylation component or by a shift in the rate-limiting step.
    Hallgren KW; Qian W; Yakubenko AV; Runge KW; Berkner KL
    Biochemistry; 2006 May; 45(17):5587-98. PubMed ID: 16634640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.
    de Sousa Bomfim A; de Freitas MCC; Covas DT; de Sousa Russo EM
    Methods Mol Biol; 2018; 1674():49-61. PubMed ID: 28921427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphisms in vitamin K-dependent gamma-carboxylation-related genes influence interindividual variability in plasma protein C and protein S activities in the general population.
    Kimura R; Kokubo Y; Miyashita K; Otsubo R; Nagatsuka K; Otsuki T; Sakata T; Nagura J; Okayama A; Minematsu K; Naritomi H; Honda S; Sato K; Tomoike H; Miyata T
    Int J Hematol; 2006 Dec; 84(5):387-97. PubMed ID: 17189218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective hemostasis during minor surgery in a case of hereditary combined deficiency of vitamin K-dependent clotting factors.
    Lapecorella M; Napolitano M; Bernardi F; Pinotti M; Sbrighi PS; Marchetti G; Canella A; Caruso P; Orecchioni A; Mariani G
    Clin Appl Thromb Hemost; 2010 Apr; 16(2):221-3. PubMed ID: 19144654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of biologically active human clotting factor IX in Drosophila S2 cells: γ-carboxylation of a human vitamin K-dependent protein by the insect enzyme.
    Vatandoost J; Zomorodipour A; Sadeghizadeh M; Aliyari R; Bos MH; Ataei F
    Biotechnol Prog; 2012; 28(1):45-51. PubMed ID: 22012919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin.
    Vecsler M; Loebstein R; Almog S; Kurnik D; Goldman B; Halkin H; Gak E
    Thromb Haemost; 2006 Feb; 95(2):205-11. PubMed ID: 16493479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S; Fregin A; Ivaskevicius V; Conzelmann E; Hörtnagel K; Pelz HJ; Lappegard K; Seifried E; Scharrer I; Tuddenham EG; Müller CR; Strom TM; Oldenburg J
    Nature; 2004 Feb; 427(6974):537-41. PubMed ID: 14765194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.