These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18177750)

  • 1. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases.
    Martin G; Doublié S; Keller W
    Biochim Biophys Acta; 2008 Apr; 1779(4):206-16. PubMed ID: 18177750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-specific ribonucleotidyl transferases.
    Martin G; Keller W
    RNA; 2007 Nov; 13(11):1834-49. PubMed ID: 17872511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual role of the RNA substrate in selectivity and catalysis by terminal uridylyl transferases.
    Stagno J; Aphasizheva I; Aphasizhev R; Luecke H
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14634-9. PubMed ID: 17785418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-ion-dependent catalysis and specificity of CCA-adding enzymes: a comparison of two classes.
    Hou YM; Gu SQ; Zhou H; Ingerman L
    Biochemistry; 2005 Sep; 44(38):12849-59. PubMed ID: 16171400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain movements during CCA-addition: a new function for motif C in the catalytic core of the human tRNA nucleotidyltransferases.
    Ernst FG; Rickert C; Bluschke A; Betat H; Steinhoff HJ; Mörl M
    RNA Biol; 2015; 12(4):435-46. PubMed ID: 25849199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template.
    Xiong Y; Steitz TA
    Nature; 2004 Aug; 430(7000):640-5. PubMed ID: 15295590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(C) synthesis by class I and class II CCA-adding enzymes.
    Seth M; Thurlow DL; Hou YM
    Biochemistry; 2002 Apr; 41(14):4521-32. PubMed ID: 11926813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA editing uridylyltransferases of trypanosomatids.
    Aphasizhev R; Aphasizheva I
    Methods Enzymol; 2007; 424():55-73. PubMed ID: 17662836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous presence of terminal adenylyl, cytidylyl, guanylyl, and uridylyl transferase in healthy tomato leaf tissue: separation from RNA-dependent RNA polymerase and characterization of the terminal transferases.
    Boege F
    Biosci Rep; 1982 Jun; 2(6):379-89. PubMed ID: 6286007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for template-independent RNA polymerization.
    Tomita K; Fukai S; Ishitani R; Ueda T; Takeuchi N; Vassylyev DG; Nureki O
    Nature; 2004 Aug; 430(7000):700-4. PubMed ID: 15295603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence motifs that distinguish ATP(CTP):tRNA nucleotidyl transferases from eubacterial poly(A) polymerases.
    Martin G; Keller W
    RNA; 2004 Jun; 10(6):899-906. PubMed ID: 15146073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae.
    Yue D; Maizels N; Weiner AM
    RNA; 1996 Sep; 2(9):895-908. PubMed ID: 8809016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common structural features of nucleic acid polymerases.
    Cramer P
    Bioessays; 2002 Aug; 24(8):724-9. PubMed ID: 12210533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of CCA-adding enzymes from human and E. coli: differences in CCA addition and tRNA 3'-end repair.
    Lizano E; Scheibe M; Rammelt C; Betat H; Mörl M
    Biochimie; 2008 May; 90(5):762-72. PubMed ID: 18226598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase.
    Lapointe CP; Wickens M
    J Biol Chem; 2013 Jul; 288(28):20723-33. PubMed ID: 23709223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions.
    Vörtler S; Mörl M
    FEBS Lett; 2010 Jan; 584(2):297-302. PubMed ID: 19883645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reengineering CCA-adding enzymes to function as (U,G)- or dCdCdA-adding enzymes or poly(C,A) and poly(U,G) polymerases.
    Cho HD; Verlinde CL; Weiner AM
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):54-9. PubMed ID: 17179213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of CutA, RNA nucleotidyl transferase with an unusual preference for cytosine.
    Malik D; Kobyłecki K; Krawczyk P; Poznański J; Jakielaszek A; Napiórkowska A; Dziembowski A; Tomecki R; Nowotny M
    Nucleic Acids Res; 2020 Sep; 48(16):9387-9405. PubMed ID: 32785623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terminal RNA uridylyltransferases of trypanosomes.
    Aphasizhev R; Aphasizheva I
    Biochim Biophys Acta; 2008 Apr; 1779(4):270-80. PubMed ID: 18191648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A family of poly(U) polymerases.
    Kwak JE; Wickens M
    RNA; 2007 Jun; 13(6):860-7. PubMed ID: 17449726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.