These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18177941)

  • 1. Stalking metal-linked dimers.
    Pazehoski KO; Collins TC; Boyle RJ; Jensen-Seaman MI; Dameron CT
    J Inorg Biochem; 2008 Mar; 102(3):522-31. PubMed ID: 18177941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-linked dimerization in the iron-dependent regulator from Mycobacterium tuberculosis.
    Semavina M; Beckett D; Logan TM
    Biochemistry; 2006 Oct; 45(41):12480-90. PubMed ID: 17029403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the metal-binding selectivity of the metallochaperone CopZ from Enterococcus hirae by electrospray ionization mass spectrometry.
    Urvoas A; Amekraz B; Moulin C; Le Clainche L; Stöcklin R; Moutiez M
    Rapid Commun Mass Spectrom; 2003; 17(16):1889-96. PubMed ID: 12876690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CopY-like copper inducible repressors are putative 'winged helix' proteins.
    Portmann R; Poulsen KR; Wimmer R; Solioz M
    Biometals; 2006 Feb; 19(1):61-70. PubMed ID: 16502332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.
    Kihlken MA; Leech AP; Le Brun NE
    Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into homo- and heterotropic allosteric coupling in the zinc sensor S. aureus CzrA from covalently fused dimers.
    Lee S; Arunkumar AI; Chen X; Giedroc DP
    J Am Chem Soc; 2006 Feb; 128(6):1937-47. PubMed ID: 16464095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a metalloregulatory bismuth(III) site in Staphylococcus aureus pI258 CadC repressor.
    Busenlehner LS; Apuy JL; Giedroc DP
    J Biol Inorg Chem; 2002 Apr; 7(4-5):551-9. PubMed ID: 11941514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a small metal binding protein from Nitrosomonas europaea.
    Barney BM; LoBrutto R; Francisco WA
    Biochemistry; 2004 Sep; 43(35):11206-13. PubMed ID: 15366930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal sensor proteins: nature's metalloregulated allosteric switches.
    Giedroc DP; Arunkumar AI
    Dalton Trans; 2007 Aug; (29):3107-20. PubMed ID: 17637984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry.
    Sun X; Xiao CL; Ge R; Yin X; Li H; Li N; Yang X; Zhu Y; He X; He QY
    Proteomics; 2011 Aug; 11(16):3288-98. PubMed ID: 21751346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge.
    Bersch B; Favier A; Schanda P; van Aelst S; Vallaeys T; Covès J; Mergeay M; Wattiez R
    J Mol Biol; 2008 Jul; 380(2):386-403. PubMed ID: 18533181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains.
    van Dongen EM; Dekkers LM; Spijker K; Meijer EW; Klomp LW; Merkx M
    J Am Chem Soc; 2006 Aug; 128(33):10754-62. PubMed ID: 16910670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into protein-metal ion partnerships.
    Barondeau DP; Getzoff ED
    Curr Opin Struct Biol; 2004 Dec; 14(6):765-74. PubMed ID: 15582401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An atypical linear Cu(I)-S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein.
    Chen K; Yuldasheva S; Penner-Hahn JE; O'Halloran TV
    J Am Chem Soc; 2003 Oct; 125(40):12088-9. PubMed ID: 14518983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA.
    Singleton C; Banci L; Ciofi-Baffoni S; Tenori L; Kihlken MA; Boetzel R; Le Brun NE
    Biochem J; 2008 May; 411(3):571-9. PubMed ID: 18215122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation.
    Binolfi A; Lamberto GR; Duran R; Quintanar L; Bertoncini CW; Souza JM; Cerveñansky C; Zweckstetter M; Griesinger C; Fernández CO
    J Am Chem Soc; 2008 Sep; 130(35):11801-12. PubMed ID: 18693689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mn(II) binding by the anthracis repressor from Bacillus anthracis.
    Sen KI; Sienkiewicz A; Love JF; vanderSpek JC; Fajer PG; Logan TM
    Biochemistry; 2006 Apr; 45(13):4295-303. PubMed ID: 16566604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized-metal affinity chromatography (IMAC): a review.
    Block H; Maertens B; Spriestersbach A; Brinker N; Kubicek J; Fabis R; Labahn J; Schäfer F
    Methods Enzymol; 2009; 463():439-73. PubMed ID: 19892187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.