BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18177943)

  • 1. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.
    Dreuw A; Wormit M
    J Inorg Biochem; 2008 Mar; 102(3):458-65. PubMed ID: 18177943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.
    Wormit M; Dreuw A
    Phys Chem Chem Phys; 2007 Jun; 9(23):2917-31. PubMed ID: 17551615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane.
    Duffy CD; Johnson MP; Macernis M; Valkunas L; Barford W; Ruban AV
    J Phys Chem B; 2010 Nov; 114(46):15244-53. PubMed ID: 20964339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants.
    Zulfugarov IS; Tovuu A; Dogsom B; Lee CY; Lee CH
    Photochem Photobiol Sci; 2010 May; 9(5):697-703. PubMed ID: 20442929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29.
    Amarie S; Wilk L; Barros T; Kühlbrandt W; Dreuw A; Wachtveitl J
    Biochim Biophys Acta; 2009 Jun; 1787(6):747-52. PubMed ID: 19248759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids.
    Müller MG; Lambrev P; Reus M; Wientjes E; Croce R; Holzwarth AR
    Chemphyschem; 2010 Apr; 11(6):1289-96. PubMed ID: 20127930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants.
    Dreuw A; Fleming GR; Head-Gordon M
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):858-62. PubMed ID: 16042614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective.
    Wormit M; Harbach PH; Mewes JM; Amarie S; Wachtveitl J; Dreuw A
    Biochim Biophys Acta; 2009 Jun; 1787(6):738-46. PubMed ID: 19366605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia.
    Kaňa R; Kotabová E; Kopečná J; Trsková E; Belgio E; Sobotka R; Ruban AV
    FEBS Lett; 2016 Apr; 590(8):1076-85. PubMed ID: 26988983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modeling of charge-transfer quenching in the CP29 minor complex.
    Cheng YC; Ahn TK; Avenson TJ; Zigmantas D; Niyogi KK; Ballottari M; Bassi R; Fleming GR
    J Phys Chem B; 2008 Oct; 112(42):13418-23. PubMed ID: 18826191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical calculations of xanthophyll-chlorophyll electronic coupling in the light-harvesting antenna of photosystem II of higher plants.
    Duffy CD; Valkunas L; Ruban AV
    J Phys Chem B; 2013 Jun; 117(25):7605-14. PubMed ID: 23697375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a mechanism of photoprotective energy dissipation in higher plants.
    Ruban AV; Berera R; Ilioaia C; van Stokkum IH; Kennis JT; Pascal AA; van Amerongen H; Robert B; Horton P; van Grondelle R
    Nature; 2007 Nov; 450(7169):575-8. PubMed ID: 18033302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes.
    Moya I; Silvestri M; Vallon O; Cinque G; Bassi R
    Biochemistry; 2001 Oct; 40(42):12552-61. PubMed ID: 11601979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On photoprotective mechanisms of carotenoids in light harvesting complex.
    Xiao FG; Shen L; Ji HF
    Biochem Biophys Res Commun; 2011 Oct; 414(1):1-4. PubMed ID: 21945931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.
    Janik E; Bednarska J; Zubik M; Sowinski K; Luchowski R; Grudzinski W; Matosiuk D; Gruszecki WI
    Arch Biochem Biophys; 2016 Feb; 592():1-9. PubMed ID: 26773208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution.
    Liu Z; Yan H; Wang K; Kuang T; Zhang J; Gui L; An X; Chang W
    Nature; 2004 Mar; 428(6980):287-92. PubMed ID: 15029188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.