BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18178143)

  • 1. Comparative study of catalase-peroxidases (KatGs).
    Singh R; Wiseman B; Deemagarn T; Jha V; Switala J; Loewen PC
    Arch Biochem Biophys; 2008 Mar; 471(2):207-14. PubMed ID: 18178143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox intermediates in the catalase cycle of catalase-peroxidases from Synechocystis PCC 6803, Burkholderia pseudomallei, and Mycobacterium tuberculosis.
    Jakopitsch C; Vlasits J; Wiseman B; Loewen PC; Obinger C
    Biochemistry; 2007 Feb; 46(5):1183-93. PubMed ID: 17260948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase-peroxidases (KatG) exhibit NADH oxidase activity.
    Singh R; Wiseman B; Deemagarn T; Donald LJ; Duckworth HW; Carpena X; Fita I; Loewen PC
    J Biol Chem; 2004 Oct; 279(41):43098-106. PubMed ID: 15280362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of the catalase-peroxidase KatG from Burkholderia pseudomallei inferred from pH-induced structural changes.
    Carpena X; Wiseman B; Deemagarn T; Herguedas B; Ivancich A; Singh R; Loewen PC; Fita I
    Biochemistry; 2006 Apr; 45(16):5171-9. PubMed ID: 16618106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of isoniazid oxidation catalyzed by bacterial catalase-peroxidases and horseradish peroxidase.
    Hillar A; Loewen PC
    Arch Biochem Biophys; 1995 Nov; 323(2):438-46. PubMed ID: 7487109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis.
    Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS
    J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two alternative substrate paths for compound I formation and reduction in catalase-peroxidase KatG from Burkholderia pseudomallei.
    Deemagarn T; Wiseman B; Carpena X; Ivancich A; Fita I; Loewen PC
    Proteins; 2007 Jan; 66(1):219-28. PubMed ID: 17063492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between isoniazid resistance and superoxide reactivity in mycobacterium tuberculosis KatG.
    Ghiladi RA; Medzihradszky KF; Rusnak FM; Ortiz de Montellano PR
    J Am Chem Soc; 2005 Sep; 127(38):13428-42. PubMed ID: 16173777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of properties among catalases.
    Switala J; Loewen PC
    Arch Biochem Biophys; 2002 May; 401(2):145-54. PubMed ID: 12054464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of the Ser324Thr variant of the catalase-peroxidase (KatG) from Burkholderia pseudomallei.
    Deemagarn T; Carpena X; Singh R; Wiseman B; Fita I; Loewen PC
    J Mol Biol; 2005 Jan; 345(1):21-8. PubMed ID: 15567407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two [Fe(IV)=O Trp*] intermediates in M. tuberculosis catalase-peroxidase discriminated by multifrequency (9-285 GHz) EPR spectroscopy: reactivity toward isoniazid.
    Singh R; Switala J; Loewen PC; Ivancich A
    J Am Chem Soc; 2007 Dec; 129(51):15954-63. PubMed ID: 18052167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the binding of isoniazid and analogues to Mycobacterium tuberculosis catalase-peroxidase.
    Zhao X; Yu S; Magliozzo RS
    Biochemistry; 2007 Mar; 46(11):3161-70. PubMed ID: 17309235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide oxidation by catalase-peroxidase follows a non-scrambling mechanism.
    Vlasits J; Jakopitsch C; Schwanninger M; Holubar P; Obinger C
    FEBS Lett; 2007 Jan; 581(2):320-4. PubMed ID: 17217949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant.
    Zhao X; Yu H; Yu S; Wang F; Sacchettini JC; Magliozzo RS
    Biochemistry; 2006 Apr; 45(13):4131-40. PubMed ID: 16566587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase-peroxidase from synechocystis is capable of chlorination and bromination reactions.
    Jakopitsch C; Regelsberger G; Furtmüller PG; Rüker F; Peschek GA; Obinger C
    Biochem Biophys Res Commun; 2001 Sep; 287(3):682-7. PubMed ID: 11563849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of distal side water and residue 315 on ligand binding to ferric Mycobacterium tuberculosis catalase-peroxidase (KatG).
    Ranguelova K; Suarez J; Metlitsky L; Yu S; Brejt SZ; Brejt SZ; Zhao L; Schelvis JP; Magliozzo RS
    Biochemistry; 2008 Nov; 47(47):12583-92. PubMed ID: 18956888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalase and peroxidase activity of INH-sensitive and INH-resistant tubercle bacilli.
    Litwin B; Srednicka-Zajac D; Przemyska B
    Pol Med J; 1969; 8(4):879-82. PubMed ID: 4998817
    [No Abstract]   [Full Text] [Related]  

  • 18. Spectroscopic and kinetic investigation of the reactions of peroxyacetic acid with Burkholderia pseudomallei catalase-peroxidase, KatG.
    Ivancich A; Donald LJ; Villanueva J; Wiseman B; Fita I; Loewen PC
    Biochemistry; 2013 Oct; 52(41):7271-82. PubMed ID: 24044787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of catalase and peroxidase activity of tubercle bacilli sensitive and resistant to INH].
    Litwin B; Srednicka-Zajac D; Przemyska B
    Gruzlica; 1968 Jun; 36(6):505-8. PubMed ID: 4970097
    [No Abstract]   [Full Text] [Related]  

  • 20. The catalase activity of Nalpha-acetyl-microperoxidase-8.
    Jeng WY; Tsai YH; Chuang WJ
    J Pept Res; 2004 Sep; 64(3):104-9. PubMed ID: 15317500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.