BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18178227)

  • 1. Organic blockers escape from trapping in the AMPA receptor channels by leaking into the cytoplasm.
    Tikhonova TB; Barygin OI; Gmiro VE; Tikhonov DB; Magazanik LG
    Neuropharmacology; 2008 Mar; 54(4):653-64. PubMed ID: 18178227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent block of native AMPA receptor channels by dicationic compounds.
    Tikhonov DB; Samoilova MV; Buldakova SL; Gmiro VE; Magazanik LG
    Br J Pharmacol; 2000 Jan; 129(2):265-74. PubMed ID: 10694232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of antagonists for NMDA and AMPA receptors.
    Bolshakov KV; Kim KH; Potapjeva NN; Gmiro VE; Tikhonov DB; Usherwood PN; Mellor IR; Magazanik LG
    Neuropharmacology; 2005 Aug; 49(2):144-55. PubMed ID: 15996563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of the blockade of glutamate channel receptors: significance for structural and physiological investigations.
    Magazanik LG; Tikhonov DB; Tikhonova TB; Lukomskaya NY
    Neurosci Behav Physiol; 2007 Mar; 37(3):277-84. PubMed ID: 17294104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter.
    Hoffmann J; Gorodetskaia A; Hollmann M
    Mol Cell Neurosci; 2006 Nov; 33(3):335-43. PubMed ID: 17010644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide modifies AMPA receptors and voltage-gated K+ channels of mouse hippocampal neurons.
    Takeuchi K; Yoshii K
    Brain Res; 2008 Oct; 1236():49-56. PubMed ID: 18755163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives.
    Barygin OI; Gmiro VE; Kim KKh; Magazanik LG; Tikhonov DB
    Neurosci Lett; 2009 Feb; 451(1):29-33. PubMed ID: 19111901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of NMDA-gated ion channels by bis(7)-tacrine: whole-cell and single-channel studies.
    Liu YW; Luo JL; Ren H; Peoples RW; Ai YX; Liu LJ; Pang YP; Li ZW; Han YF; Li CY
    Neuropharmacology; 2008 Jun; 54(7):1086-94. PubMed ID: 18407299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMJ-53A accelerates slow inactivation gating of voltage-gated K+ channels in mouse neuroblastoma N2A cells.
    Chao CC; Shieh J; Kuo SC; Wu BT; Hour MJ; Leung YM
    Neuropharmacology; 2008 Jun; 54(7):1128-35. PubMed ID: 18406431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ionotropic glutamate receptors in insect neuro-muscular junction.
    Fedorova IM; Magazanik LG; Tikhonov DB
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):275-80. PubMed ID: 18723120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells.
    Kreitzer MA; Birnbaum AD; Qian H; Malchow RP
    Vis Neurosci; 2009; 26(4):375-87. PubMed ID: 19678977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of AMPA receptor populations in rat brain cells by the use of subunit-specific open channel blocking drug, IEM-1460.
    Buldakova SL; Vorobjev VS; Sharonova IN; Samoilova MV; Magazanik LG
    Brain Res; 1999 Oct; 846(1):52-8. PubMed ID: 10536213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V; Masetto S; Correia MJ
    Neuroscience; 2008 Sep; 155(4):1250-61. PubMed ID: 18652879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent and -independent block of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor channels.
    Barygin OI; Luchkina NV; Tikhonov DB
    J Neurochem; 2010 Dec; 115(6):1621-32. PubMed ID: 20969571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two mechanisms of action of the adamantane derivative IEM-1460 at human AMPA-type glutamate receptors.
    Schlesinger F; Tammena D; Krampfl K; Bufler J
    Br J Pharmacol; 2005 Jul; 145(5):656-63. PubMed ID: 15834439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural modifications to an N-methyl-D-aspartate receptor antagonist result in large differences in trapping block.
    Mealing GA; Lanthorn TH; Small DL; Murray RJ; Mattes KC; Comas TM; Morley P
    J Pharmacol Exp Ther; 2001 Jun; 297(3):906-14. PubMed ID: 11356910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ameliorating effects of preadolescent aniracetam treatment on prenatal ethanol-induced impairment in AMPA receptor activity.
    Wijayawardhane N; Shonesy BC; Vaithianathan T; Pandiella N; Vaglenova J; Breese CR; Dityatev A; Suppiramaniam V
    Neurobiol Dis; 2008 Jan; 29(1):81-91. PubMed ID: 17916430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The open channel blocking drug, IEM-1460, reveals functionally distinct alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in rat brain neurons.
    Samoilova MV; Buldakova SL; Vorobjev VS; Sharonova IN; Magazanik LG
    Neuroscience; 1999; 94(1):261-8. PubMed ID: 10613516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective block of AMPA/kainate receptors of hippocampal interneurons as a new approach to the investigation of inhibitory system.
    Magazanik LG; Samoĭlova MV; Buldakova SL; Esin KV; Gmiro VE
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):19-39. PubMed ID: 13677665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors facilitates use-dependent inhibition by pentobarbital.
    Jackson MF; Joo DT; Al-Mahrouki AA; Orser BA; Macdonald JF
    Mol Pharmacol; 2003 Aug; 64(2):395-406. PubMed ID: 12869644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.