These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18178235)

  • 1. Rapid removal of flutriafol in water by zero-valent iron powder.
    Ghauch A
    Chemosphere; 2008 Mar; 71(5):816-26. PubMed ID: 18178235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems.
    Ghauch A; Tuqan A
    Chemosphere; 2008 Oct; 73(5):751-9. PubMed ID: 18656227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation into advanced oxidation of three chlorophenoxy pesticides in surface water.
    MacAdam J; Parsons SA
    Water Sci Technol; 2009; 59(8):1665-71. PubMed ID: 19403981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of thiobencarb in aqueous solution by zero valent iron.
    Nurul Amin M; Kaneco S; Kato T; Katsumata H; Suzuki T; Ohta K
    Chemosphere; 2008 Jan; 70(3):511-5. PubMed ID: 17963816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions.
    Lafi WK; Al-Qodah Z
    J Hazard Mater; 2006 Sep; 137(1):489-97. PubMed ID: 16616414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles.
    Ghauch A; Tuqan A; Assi HA
    Environ Pollut; 2009 May; 157(5):1626-35. PubMed ID: 19168269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of triazophos pesticide from wastewater with Fenton reagent.
    Li R; Yang C; Chen H; Zeng G; Yu G; Guo J
    J Hazard Mater; 2009 Aug; 167(1-3):1028-32. PubMed ID: 19233558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced oxidation and mineralization of simazine using Fenton's reagent.
    Catalkaya EC; Kargi F
    J Hazard Mater; 2009 Sep; 168(2-3):688-94. PubMed ID: 19297085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles.
    Xiong Z; Zhao D; Pan G
    Water Res; 2007 Aug; 41(15):3497-505. PubMed ID: 17597179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging.
    Kouznetsova I; Bayer P; Ebert M; Finkel M
    J Contam Hydrol; 2007 Feb; 90(1-2):58-80. PubMed ID: 17113680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.
    Jin J; Zhao WR; Xu XH; Hao ZW; Liu Y; He P; Zhou M
    J Environ Sci (China); 2006; 18(3):464-7. PubMed ID: 17294641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of groundwater polluted by arsenic compounds by zero valent iron.
    Sun H; Wang L; Zhang R; Sui J; Xu G
    J Hazard Mater; 2006 Feb; 129(1-3):297-303. PubMed ID: 16194593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron.
    Zhang Y; Amrhein C; Frankenberger WT
    Sci Total Environ; 2005 Nov; 350(1-3):1-11. PubMed ID: 16227069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater.
    Fjordbøge AS; Baun A; Vastrup T; Kjeldsen P
    Chemosphere; 2013 Jan; 90(2):627-33. PubMed ID: 23021613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions.
    Shrout JD; Larese-Casanova P; Scherer MM; Alvarez PJ
    Environ Technol; 2005 Oct; 26(10):1115-26. PubMed ID: 16342534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L; Yang W; Guan X; Li J; Xu Z; Wu J; Huang Y; Zhang X
    Water Res; 2013 Oct; 47(15):5846-55. PubMed ID: 23899877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct enantiomeric resolutions of chiral triazole pesticides by high-performance liquid chromatography.
    Wang P; Jiang S; Liu D; Wang P; Zhou Z
    J Biochem Biophys Methods; 2005 Mar; 62(3):219-30. PubMed ID: 15733582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluidized zero valent iron bed reactor for nitrate removal.
    Chen YM; Li CW; Chen SS
    Chemosphere; 2005 May; 59(6):753-9. PubMed ID: 15811403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.
    Chen SS; Cheng CY; Li CW; Chai PH; Chang YM
    J Hazard Mater; 2007 Apr; 142(1-2):362-7. PubMed ID: 16987595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles.
    Bezbaruah AN; Thompson JM; Chisholm BJ
    J Environ Sci Health B; 2009 Aug; 44(6):518-24. PubMed ID: 20183057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.