These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18178431)

  • 1. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.
    Soleimani M; Kaghazchi T
    Bioresour Technol; 2008 Sep; 99(13):5374-83. PubMed ID: 18178431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation.
    Kula I; Uğurlu M; Karaoğlu H; Celik A
    Bioresour Technol; 2008 Feb; 99(3):492-501. PubMed ID: 17350829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies.
    Kadirvelu K; Karthika C; Vennilamani N; Pattabhi S
    Chemosphere; 2005 Aug; 60(8):1009-17. PubMed ID: 15993147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions.
    Demirbas E; Kobya M; Konukman AE
    J Hazard Mater; 2008 Jun; 154(1-3):787-94. PubMed ID: 18068295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.
    Onal Y
    J Hazard Mater; 2006 Oct; 137(3):1719-28. PubMed ID: 16806677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon.
    Demirbas E; Kobya M; Sulak MT
    Bioresour Technol; 2008 Sep; 99(13):5368-73. PubMed ID: 18093829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.
    Ozdes D; Gundogdu A; Kemer B; Duran C; Senturk HB; Soylak M
    J Hazard Mater; 2009 Jul; 166(2-3):1480-7. PubMed ID: 19167162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization.
    Onal Y; Akmil-Başar C; Sarici-Ozdemir C
    J Hazard Mater; 2007 Sep; 148(3):727-34. PubMed ID: 17467168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot.
    Başar CA
    J Hazard Mater; 2006 Jul; 135(1-3):232-41. PubMed ID: 16442221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons.
    Ozçimen D; Ersoy-Meriçboyu A
    J Hazard Mater; 2009 Sep; 168(2-3):1118-25. PubMed ID: 19342167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone.
    Kobya M; Demirbas E; Senturk E; Ince M
    Bioresour Technol; 2005 Sep; 96(13):1518-21. PubMed ID: 15939281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk--An agricultural waste.
    Gupta VK; Jain R; Varshney S
    J Hazard Mater; 2007 Apr; 142(1-2):443-8. PubMed ID: 17010514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents.
    Mittal A; Mittal J; Kurup L; Singh AK
    J Hazard Mater; 2006 Nov; 138(1):95-105. PubMed ID: 16806679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones.
    Jaramillo J; Gómez-Serrano V; Alvarez PM
    J Hazard Mater; 2009 Jan; 161(2-3):670-6. PubMed ID: 18495336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk.
    Bansal M; Garg U; Singh D; Garg VK
    J Hazard Mater; 2009 Feb; 162(1):312-20. PubMed ID: 18573603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste.
    Rao MM; Reddy DH; Venkateswarlu P; Seshaiah K
    J Environ Manage; 2009 Jan; 90(1):634-43. PubMed ID: 18313830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone.
    Kazemipour M; Ansari M; Tajrobehkar S; Majdzadeh M; Kermani HR
    J Hazard Mater; 2008 Jan; 150(2):322-7. PubMed ID: 17548149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions.
    Hameed BH; Krishni RR; Sata SA
    J Hazard Mater; 2009 Feb; 162(1):305-11. PubMed ID: 18573607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.
    Amuda OS; Adelowo FE; Ologunde MO
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):184-92. PubMed ID: 19022632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.