These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18178653)

  • 1. Development of a physics-based force field for the scoring and refinement of protein models.
    Wroblewska L; Jagielska A; Skolnick J
    Biophys J; 2008 Apr; 94(8):3227-40. PubMed ID: 18178653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking.
    Wroblewska L; Skolnick J
    J Comput Chem; 2007 Sep; 28(12):2059-66. PubMed ID: 17407093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical scoring function based on AMBER force field and Poisson-Boltzmann implicit solvent for protein structure prediction.
    Hsieh MJ; Luo R
    Proteins; 2004 Aug; 56(3):475-86. PubMed ID: 15229881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-atom force field for tertiary structure prediction of helical proteins.
    Herges T; Wenzel W
    Biophys J; 2004 Nov; 87(5):3100-9. PubMed ID: 15507688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein model refinement using an optimized physics-based all-atom force field.
    Jagielska A; Wroblewska L; Skolnick J
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8268-73. PubMed ID: 18550813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying native-like protein structures using physics-based potentials.
    Dominy BN; Brooks CL
    J Comput Chem; 2002 Jan; 23(1):147-60. PubMed ID: 11913380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of decoys to optimize an all-atom force field including hydration.
    Arnautova YA; Scheraga HA
    Biophys J; 2008 Sep; 95(5):2434-49. PubMed ID: 18502794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure refinement by optimization.
    Carlsen M; Røgen P
    Proteins; 2015 Sep; 83(9):1616-24. PubMed ID: 26095680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model.
    Lee MC; Duan Y
    Proteins; 2004 May; 55(3):620-34. PubMed ID: 15103626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel high resolution Calpha--Calpha distance dependent force field based on a high quality decoy set.
    Rajgaria R; McAllister SR; Floudas CA
    Proteins; 2006 Nov; 65(3):726-41. PubMed ID: 16981202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.
    Liwo A; Khalili M; Czaplewski C; Kalinowski S; Ołdziej S; Wachucik K; Scheraga HA
    J Phys Chem B; 2007 Jan; 111(1):260-85. PubMed ID: 17201450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation.
    Arnautova YA; Vorobjev YN; Vila JA; Scheraga HA
    Proteins; 2009 Oct; 77(1):38-51. PubMed ID: 19384995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model.
    Felts AK; Gallicchio E; Wallqvist A; Levy RM
    Proteins; 2002 Aug; 48(2):404-22. PubMed ID: 12112706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coarse-grained protein force field for folding and structure prediction.
    Maupetit J; Tuffery P; Derreumaux P
    Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein loop selection using orientation-dependent force fields derived by parameter optimization.
    Liang S; Zhang C; Standley DM
    Proteins; 2011 Jul; 79(7):2260-7. PubMed ID: 21574188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energies of protein decoys provide insight into determinants of protein stability.
    Vorobjev YN; Hermans J
    Protein Sci; 2001 Dec; 10(12):2498-506. PubMed ID: 11714917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structure evaluation using an all-atom energy based empirical scoring function.
    Narang P; Bhushan K; Bose S; Jayaram B
    J Biomol Struct Dyn; 2006 Feb; 23(4):385-406. PubMed ID: 16363875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.
    Molloy K; Saleh S; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1162-75. PubMed ID: 24384705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.