These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18178717)

  • 21. Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice.
    Jia LG; Donnet C; Bogaev RC; Blatt RJ; McKinney CE; Day KH; Berr SS; Jones LR; Moorman JR; Sweadner KJ; Tucker AL
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1982-8. PubMed ID: 15563542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity.
    Rasmussen MK; Kristensen M; Juel C
    Acta Physiol (Oxf); 2008 Sep; 194(1):67-79. PubMed ID: 18373741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical properties of membranes isolated from calcium-depleted rabbit hearts.
    Lamers JM; Stinis JT; Ruigrok TJ
    Circ Res; 1984 Mar; 54(3):217-26. PubMed ID: 6321053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patent and latent activities of cardiac membrane vesicles: distinctions between proteins of sarcolemma and sarcoplasmic reticulum.
    Besch HR; Jones LR
    Adv Myocardiol; 1980; 1():123-38. PubMed ID: 6248930
    [No Abstract]   [Full Text] [Related]  

  • 25. [FXYD proteins: novel regulators of Na,K-ATPase].
    Delprat B; Bibert S; Geering K
    Med Sci (Paris); 2006; 22(6-7):633-8. PubMed ID: 16828040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake.
    Flockerzi V; Mewes R; Ruth P; Hofmann F
    Eur J Biochem; 1983 Sep; 135(1):131-42. PubMed ID: 6309517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of calcium in interpretation of NaK-ATPase isoform function in the mouse heart.
    Schwartz A; Petrashevskaya NN
    Cardiovasc Res; 2001 Jul; 51(1):9-12. PubMed ID: 11399242
    [No Abstract]   [Full Text] [Related]  

  • 28. Expression and distribution of Na, K-ATPase isoforms in the human uterus.
    Floyd RV; Wray S; Quenby S; Martín-Vasallo P; Mobasheri A
    Reprod Sci; 2010 Apr; 17(4):366-76. PubMed ID: 20065300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein analysis of cardiac sarcolemma: effects of membrane-perturbing agents on membrane proteins and calcium transport.
    St Louis PJ; Sulakhe PV
    Biochemistry; 1978 Oct; 17(21):4540-50. PubMed ID: 214104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phospholemman: a new force in cardiac contractility.
    Sweadner KJ
    Circ Res; 2005 Sep; 97(6):510-1. PubMed ID: 16166561
    [No Abstract]   [Full Text] [Related]  

  • 31. Evidence against a regulation of Na+/K(+)-ATPase by Gi proteins. Failure to detect an influence of G proteins on Na+/Ca(2+)-exchange in cardiac sarcolemmal membranes.
    Mura RA; Zeifang F; Piacentini L; Kübler W; Rauch B; Niroomand F
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):505-12. PubMed ID: 8740143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of FXYD protein genes in a teleost: tissue-specific expression and response to salinity change.
    Tipsmark CK
    Am J Physiol Regul Integr Comp Physiol; 2008 Apr; 294(4):R1367-78. PubMed ID: 18256141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium.
    Adams RJ; Schwartz A; Grupp G; Grupp I; Lee SW; Wallick ET; Powell T; Twist VW; Gathiram P
    Nature; 1982 Mar; 296(5853):167-9. PubMed ID: 6278317
    [No Abstract]   [Full Text] [Related]  

  • 34. The Na(+), K(+)-ATPase: more than just a sodium pump.
    Scheiner-Bobis G
    Cardiovasc Res; 2011 Jan; 89(1):6-8. PubMed ID: 21097805
    [No Abstract]   [Full Text] [Related]  

  • 35. Phospholemman overexpression inhibits Na+-K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in postinfarction myocytes.
    Zhang XQ; Moorman JR; Ahlers BA; Carl LL; Lake DE; Song J; Mounsey JP; Tucker AL; Chan YM; Rothblum LI; Stahl RC; Carey DJ; Cheung JY
    J Appl Physiol (1985); 2006 Jan; 100(1):212-20. PubMed ID: 16195392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity of Na+/K+-ATPase and of Ca++-ATPase under the action of adenosine triphosphate in experimental myocardial hypertrophy.
    Moisin C; Balta N; Filcescu V; Dumitriu IF; Stoian G; Petec G
    Rom J Physiol; 1998; 35(3-4):303-11. PubMed ID: 11061329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles.
    Trumble WR; Sutko JL; Reeves JP
    Life Sci; 1980 Jul; 27(3):207-14. PubMed ID: 6249998
    [No Abstract]   [Full Text] [Related]  

  • 38. A study of the membrane association and regulatory effect of the phospholemman cytoplasmic domain.
    Hughes E; Whittaker CA; Barsukov IL; Esmann M; Middleton DA
    Biochim Biophys Acta; 2011 Apr; 1808(4):1021-31. PubMed ID: 21130070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of action of estradiol on sodium pump in sarcolemma from the myocardium.
    Ziegelhöffer A; Dzurba A; Vrbjar N; Styk J; Slezák J
    Bratisl Lek Listy; 1990 Dec; 91(12):902-10. PubMed ID: 2176917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-induced stimulation of calcium binding to cardiac sarcolemma.
    Mas-Oliva J; Williams AJ; Nayler WG
    Biochem Biophys Res Commun; 1979 Mar; 87(2):441-7. PubMed ID: 220973
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.