BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 18178801)

  • 21. Renal branching morphogenesis: morphogenetic and signaling mechanisms.
    Blake J; Rosenblum ND
    Semin Cell Dev Biol; 2014 Dec; 36():2-12. PubMed ID: 25080023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stromal cells mediate retinoid-dependent functions essential for renal development.
    Mendelsohn C; Batourina E; Fung S; Gilbert T; Dodd J
    Development; 1999 Mar; 126(6):1139-48. PubMed ID: 10021334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renin-angiotensin system-growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis.
    Yosypiv IV
    Pediatr Nephrol; 2009 Jun; 24(6):1113-20. PubMed ID: 18958502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new role for the renin-angiotensin system in the development of the ureteric bud and renal collecting system.
    Yosypiv IV
    Keio J Med; 2008 Dec; 57(4):184-9. PubMed ID: 19110530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BMP-2 and OP-1 exert direct and opposite effects on renal branching morphogenesis.
    Piscione TD; Yager TD; Gupta IR; Grinfeld B; Pei Y; Attisano L; Wrana JL; Rosenblum ND
    Am J Physiol; 1997 Dec; 273(6):F961-75. PubMed ID: 9435686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system.
    Michael L; Sweeney DE; Davies JA
    J Anat; 2007 Jan; 210(1):89-97. PubMed ID: 17229286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of polycystin-1 function interferes with branching morphogenesis of the ureteric bud in developing mouse kidneys.
    Polgar K; Burrow CR; Hyink DP; Fernandez H; Thornton K; Li X; Gusella GL; Wilson PD
    Dev Biol; 2005 Oct; 286(1):16-30. PubMed ID: 16122726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of ICAT gene function leads to arrest of ureteric bud branching and renal agenesis.
    Hasegawa Y; Satoh K; Iizuka-Kogo A; Shimomura A; Nomura R; Akiyama T; Senda T
    Biochem Biophys Res Commun; 2007 Nov; 362(4):988-94. PubMed ID: 17803964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alk3 controls nephron number and androgen production via lineage-specific effects in intermediate mesoderm.
    Di Giovanni V; Alday A; Chi L; Mishina Y; Rosenblum ND
    Development; 2011 Jul; 138(13):2717-27. PubMed ID: 21613322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exogenous BMP-4 amplifies asymmetric ureteric branching in the developing mouse kidney in vitro.
    Cain JE; Nion T; Jeulin D; Bertram JF
    Kidney Int; 2005 Feb; 67(2):420-31. PubMed ID: 15673289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells.
    Yamamoto M; Cui L; Johkura K; Asanuma K; Okouchi Y; Ogiwara N; Sasaki K
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F52-60. PubMed ID: 16106040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney.
    Meyer TN; Schwesinger C; Bush KT; Stuart RO; Rose DW; Shah MM; Vaughn DA; Steer DL; Nigam SK
    Dev Biol; 2004 Nov; 275(1):44-67. PubMed ID: 15464572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Canonical WNT signaling during kidney development.
    Iglesias DM; Hueber PA; Chu L; Campbell R; Patenaude AM; Dziarmaga AJ; Quinlan J; Mohamed O; Dufort D; Goodyer PR
    Am J Physiol Renal Physiol; 2007 Aug; 293(2):F494-500. PubMed ID: 17494089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis.
    Grisaru S; Cano-Gauci D; Tee J; Filmus J; Rosenblum ND
    Dev Biol; 2001 Mar; 231(1):31-46. PubMed ID: 11180950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis.
    Lokmane L; Heliot C; Garcia-Villalba P; Fabre M; Cereghini S
    Development; 2010 Jan; 137(2):347-57. PubMed ID: 20040500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The loss of Trps1 suppresses ureteric bud branching because of the activation of TGF-β signaling.
    Gui T; Sun Y; Gai Z; Shimokado A; Muragaki Y; Zhou G
    Dev Biol; 2013 May; 377(2):415-27. PubMed ID: 23537899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of N-myc in the developing mouse kidney.
    Bates CM; Kharzai S; Erwin T; Rossant J; Parada LF
    Dev Biol; 2000 Jun; 222(2):317-25. PubMed ID: 10837121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurturin: an autocrine regulator of renal collecting duct development.
    Davies JA; Millar CB; Johnson EM; Milbrandt J
    Dev Genet; 1999; 24(3-4):284-92. PubMed ID: 10322636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells.
    Pohl M; Sakurai H; Stuart RO; Nigam SK
    Dev Biol; 2000 Aug; 224(2):312-25. PubMed ID: 10926769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Canonical WNT/beta-catenin signaling is required for ureteric branching.
    Bridgewater D; Cox B; Cain J; Lau A; Athaide V; Gill PS; Kuure S; Sainio K; Rosenblum ND
    Dev Biol; 2008 May; 317(1):83-94. PubMed ID: 18358465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.