These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18178894)

  • 21. Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.).
    Lee MS; Anderson EK; Stojšin D; McPherson MA; Baltazar B; Horak MJ; de la Fuente JM; Wu K; Crowley JH; Rayburn AL; Lee DK
    Transgenic Res; 2017 Aug; 26(4):501-514. PubMed ID: 28466411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential gene flow from transgenic rice (Oryza sativa L.) to different weedy rice (Oryza sativa f. spontanea) accessions based on reproductive compatibility.
    Song X; Liu L; Wang Z; Qiang S
    Pest Manag Sci; 2009 Aug; 65(8):862-9. PubMed ID: 19418443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment.
    Bennett R; Phipps R; Strange A; Grey P
    Plant Biotechnol J; 2004 Jul; 2(4):273-8. PubMed ID: 17134388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-distance GM pollen movement of creeping bentgrass using modeled wind trajectory analysis.
    Van de Water PK; Watrud LS; Lee EH; Burdick C; King GA
    Ecol Appl; 2007 Jun; 17(4):1244-56. PubMed ID: 17555232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pollen-mediated transfer of herbicide resistance in Echinochloa crus-galli.
    Bagavathiannan MV; Norsworthy JK
    Pest Manag Sci; 2014 Sep; 70(9):1425-31. PubMed ID: 24623467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EU biotech crop regulations and environmental risk: a case of the emperor's new clothes?
    Morris SH
    Trends Biotechnol; 2007 Jan; 25(1):2-6. PubMed ID: 17113665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pollen-mediated gene flow in maize in real situations of coexistence.
    Messeguer J; Peñas G; Ballester J; Bas M; Serra J; Salvia J; Palaudelmàs M; Melé E
    Plant Biotechnol J; 2006 Nov; 4(6):633-45. PubMed ID: 17309734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3.
    Wang L; Li X; Chen S; Liu G
    Biotechnol Lett; 2009 Feb; 31(2):313-9. PubMed ID: 18936880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional prediction of maize pollen dispersal and cross-pollination, and the effects of windbreaks.
    Ushiyama T; Du M; Inoue S; Shibaike H; Yonemura S; Kawashima S; Amano K
    Environ Biosafety Res; 2009; 8(4):183-202. PubMed ID: 20883658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shared flowering phenology, insect pests, and pathogens among wild, weedy, and cultivated rice in the Mekong Delta, Vietnam: implications for transgenic rice.
    Cohen MB; Arpaia S; Lan LP; Chau LM; Snow AA
    Environ Biosafety Res; 2008; 7(2):73-85. PubMed ID: 18549769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions.
    D'Andrea L; Felber F; Guadagnuolo R
    Environ Biosafety Res; 2008; 7(2):61-71. PubMed ID: 18549768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.
    Loureiro I; Escorial MC; Chueca MC
    PLoS One; 2016; 11(6):e0157892. PubMed ID: 27336441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air-mediated pollen flow from genetically modified to conventional crops.
    Kuparinen A; Schurr F; Tackenberg O; O'Hara RB
    Ecol Appl; 2007 Mar; 17(2):431-40. PubMed ID: 17489250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and ecological consequences of transgene flow to the wild flora.
    Felber F; Kozlowski G; Arrigo N; Guadagnuolo R
    Adv Biochem Eng Biotechnol; 2007; 107():173-205. PubMed ID: 17522826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weed control in glyphosate-tolerant maize in Europe.
    Dewar AM
    Pest Manag Sci; 2009 Oct; 65(10):1047-58. PubMed ID: 19557724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene flow from glyphosate-resistant crops.
    Mallory-Smith C; Zapiola M
    Pest Manag Sci; 2008 Apr; 64(4):428-40. PubMed ID: 18181145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Farm questionnaires for monitoring genetically modified crops: a case study using GM maize.
    Schmidt K; Wilhelm R; Schmidtke J; Beissner L; Mönkemeyer W; Böttinger P; Sweet J; Schiemann J
    Environ Biosafety Res; 2008; 7(3):163-79. PubMed ID: 18801326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meteorological input data requirements to predict cross-pollination of GMO maize with Lagrangian approaches.
    Lipsius K; Wilhelm R; Richter O; Schmalstieg KJ; Schiemann J
    Environ Biosafety Res; 2006; 5(3):151-68. PubMed ID: 17445511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud.
    Wang J; An C; Guo H; Yang X; Chen J; Zong J; Li J; Liu J
    BMC Plant Biol; 2020 Mar; 20(1):114. PubMed ID: 32169028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators.
    Yan S; Zhu J; Zhu W; Li Z; Shelton AM; Luo J; Cui J; Zhang Q; Liu X
    Sci Rep; 2015 Nov; 5():15917. PubMed ID: 26525573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.