These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18179274)

  • 1. Mechanical model for filament buckling and growth by phase ordering.
    Rey AD; Abukhdeir NM
    Langmuir; 2008 Feb; 24(3):662-5. PubMed ID: 18179274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanics model of microtubule buckling in living cells.
    Li T
    J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical density functional theory and its application to spinodal decomposition.
    Archer AJ; Evans R
    J Chem Phys; 2004 Sep; 121(9):4246-54. PubMed ID: 15332972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acousto-spinodal decomposition of compressible polymer solutions: early stage analysis.
    Rasouli G; Rey AD
    J Chem Phys; 2011 May; 134(18):184901. PubMed ID: 21568529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does coarsening begin during the initial stages of spinodal decomposition?
    Rappl TJ; Balsara NP
    J Chem Phys; 2005 Jun; 122(21):214903. PubMed ID: 15974786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phase dynamics and wetting layer formation mechanisms in two-step surface-directed spinodal decomposition.
    Yan LT; Xie XM
    J Chem Phys; 2008 Apr; 128(15):154702. PubMed ID: 18433253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule buckling in an elastic matrix with quenched disorder.
    Lee CT; Terentjev EM
    J Chem Phys; 2018 Oct; 149(14):145101. PubMed ID: 30316284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann study of hydrodynamic effects in lamellar ordering process of two-dimensional quenched block copolymers.
    Song KX; Jia YX; Sun ZY; An LJ
    J Chem Phys; 2008 Oct; 129(14):144901. PubMed ID: 19045162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic buckling of smectic-A tubular filaments in an isotropic phase.
    Todorokihara M; Iwata Y; Naito H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021701. PubMed ID: 15447503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a semiflexible polar filament in Stokes flow.
    Young YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016309. PubMed ID: 20866727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinodal-assisted nucleation during symmetry-breaking phase transitions.
    Vega DA; Gómez LR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051607. PubMed ID: 19518467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Buckling of a Filament Impacted by a Falling Droplet.
    Lu M; Deng J; Mao X; Brandt L
    Phys Rev Lett; 2023 Nov; 131(18):184002. PubMed ID: 37977627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of instabilities in filament buckling processes.
    Monastra AG; Carusela MF; van der Velde G; D'Angelo MV; Bruno L
    Phys Rev E; 2019 Mar; 99(3-1):033004. PubMed ID: 30999474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial stage of spinodal decomposition in a rigid-rod system.
    Green MJ; Brown RA; Armstrong RC
    J Chem Phys; 2007 Jan; 126(3):034903. PubMed ID: 17249899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Cahn-Hilliard-Cook ordering theory: early time behavior of spatial-symmetry-breaking phase transition kinetics.
    Barros K; Dominguez R; Klein W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):042104. PubMed ID: 19518282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeleton-membrane interactions in neuronal growth cones: a finite analysis study.
    Allen KB; Sasoglu FM; Layton BE
    J Biomech Eng; 2009 Feb; 131(2):021006. PubMed ID: 19102565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing spinodal decomposition of an anisotropic fluid mixture.
    Gruhn T; Pogorelov E; Seiferling F; Emmerich H
    J Phys Condens Matter; 2017 Feb; 29(5):055103. PubMed ID: 27941222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cahn-hilliard theory for unstable granular fluids.
    van Noije TP ; Ernst MH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1765-82. PubMed ID: 11046461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow.
    Deng M; Grinberg L; Caswell B; Karniadakis GE
    Soft Matter; 2015 Jun; 11(24):4962-72. PubMed ID: 26023834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonisothermal model for the direct isotropic/smectic-A liquid-crystalline transition.
    Abukhdeir NM; Rey AD
    Langmuir; 2009 Oct; 25(19):11923-9. PubMed ID: 19788233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.