BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18179433)

  • 21. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene.
    Tsuchimatsu T; Suwabe K; Shimizu-Inatsugi R; Isokawa S; Pavlidis P; Städler T; Suzuki G; Takayama S; Watanabe M; Shimizu KK
    Nature; 2010 Apr; 464(7293):1342-6. PubMed ID: 20400945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.
    Prigoda NL; Nassuth A; Mable BK
    Mol Biol Evol; 2005 Jul; 22(7):1609-20. PubMed ID: 15858208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of the trnF(GAA) gene in Arabidopsis relatives and the brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene.
    Koch MA; Dobes C; Matschinger M; Bleeker W; Vogel J; Kiefer M; Mitchell-Olds T
    Mol Biol Evol; 2005 Apr; 22(4):1032-43. PubMed ID: 15689533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population genomics of the Arabidopsis thaliana flowering time gene network.
    Flowers JM; Hanzawa Y; Hall MC; Moore RC; Purugganan MD
    Mol Biol Evol; 2009 Nov; 26(11):2475-86. PubMed ID: 19625391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity.
    Kuang H; Caldwell KS; Meyers BC; Michelmore RW
    Plant J; 2008 Apr; 54(1):69-80. PubMed ID: 18182023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transgenic self-incompatible Arabidopsis thaliana model for evolutionary and mechanistic studies of crucifer self-incompatibility.
    Rea AC; Liu P; Nasrallah JB
    J Exp Bot; 2010 Apr; 61(7):1897-906. PubMed ID: 20097845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discordant longitudinal clines in flowering time and phytochrome C in Arabidopsis thaliana.
    Samis KE; Heath KD; Stinchcombe JR
    Evolution; 2008 Dec; 62(12):2971-83. PubMed ID: 18752603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana.
    Moison M; Roux F; Quadrado M; Duval R; Ekovich M; Lê DH; Verzaux M; Budar F
    Plant J; 2010 Sep; 63(5):728-38. PubMed ID: 20553420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range.
    Bakker EG; Stahl EA; Toomajian C; Nordborg M; Kreitman M; Bergelson J
    Mol Ecol; 2006 Apr; 15(5):1405-18. PubMed ID: 16626462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata.
    Kivimäki M; Kärkkäinen K; Gaudeul M; Løe G; Agren J
    Mol Ecol; 2007 Jan; 16(2):453-62. PubMed ID: 17217357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of novel LMW-GS genes at Glu-D3 locus on chromosome 1D in Aegilops tauschii.
    Zhao X; Yang Y; He Z; Lei Z; Ma W; Sun Q; Xia X
    Hereditas; 2008 Oct; 145(5):238-50. PubMed ID: 19076692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata.
    Nasrallah ME; Liu P; Nasrallah JB
    Science; 2002 Jul; 297(5579):247-9. PubMed ID: 12114625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization and evolution of self-incompatibility genes in Arabidopsis thaliana: the case of the Sc haplotype.
    Dwyer KG; Berger MT; Ahmed R; Hritzo MK; McCulloch AA; Price MJ; Serniak NJ; Walsh LT; Nasrallah JB; Nasrallah ME
    Genetics; 2013 Mar; 193(3):985-94. PubMed ID: 23307897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism.
    Kuittinen H; Niittyvuopio A; Rinne P; Savolainen O
    Mol Biol Evol; 2008 Feb; 25(2):319-29. PubMed ID: 18032403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid.
    Daskalova SM; Pah AR; Baluch DP; Lopez LC
    Plant Biol (Stuttg); 2009 May; 11(3):284-99. PubMed ID: 19470101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field.
    Korves TM; Schmid KJ; Caicedo AL; Mays C; Stinchcombe JR; Purugganan MD; Schmitt J
    Am Nat; 2007 May; 169(5):E141-57. PubMed ID: 17427127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes.
    Goepfert S; Vidoudez C; Tellgren-Roth C; Delessert S; Hiltunen JK; Poirier Y
    Plant J; 2008 Dec; 56(5):728-42. PubMed ID: 18657232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.