These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 18179540)
1. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters. Jenkins MB; Endale DM; Fisher DS J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540 [TBL] [Abstract][Full Text] [Related]
2. Most probable number methodology for quantifying dilute concentrations and fluxes of Escherichia coli O157:H7 in surface waters. Jenkins MB; Endale DM; Fisher DS; Gay PA J Appl Microbiol; 2009 Feb; 106(2):572-9. PubMed ID: 19200323 [TBL] [Abstract][Full Text] [Related]
3. Survival dynamics of fecal bacteria in ponds in agricultural watersheds of the Piedmont and Coastal Plain of Georgia. Jenkins MB; Endale DM; Fisher DS; Adams MP; Lowrance R; Newton GL; Vellidis G Water Res; 2012 Jan; 46(1):176-86. PubMed ID: 22088271 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a new medium for the enumeration of total coliforms and Escherichia coli in Japanese surface waters. Kodaka H; Mizuochi S; Saito M; Matsuoka H J Appl Microbiol; 2008 Apr; 104(4):1112-8. PubMed ID: 17976170 [TBL] [Abstract][Full Text] [Related]
5. Waterfowl and the bacteriological quality of amenity ponds. Abulreesh HH; Paget TA; Goulder R J Water Health; 2004 Sep; 2(3):183-9. PubMed ID: 15497814 [TBL] [Abstract][Full Text] [Related]
6. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality. Viau EJ; Goodwin KD; Yamahara KM; Layton BA; Sassoubre LM; Burns SL; Tong HI; Wong SH; Lu Y; Boehm AB Water Res; 2011 May; 45(11):3279-90. PubMed ID: 21492899 [TBL] [Abstract][Full Text] [Related]
7. Quantification and prevalence of Salmonella in beef cattle presenting at slaughter. Fegan N; Vanderlinde P; Higgs G; Desmarchelier P J Appl Microbiol; 2004; 97(5):892-8. PubMed ID: 15479403 [TBL] [Abstract][Full Text] [Related]
8. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique. Bushon RN; Brady AM; Likirdopulos CA; Cireddu JV J Appl Microbiol; 2009 Feb; 106(2):432-41. PubMed ID: 19200311 [TBL] [Abstract][Full Text] [Related]
9. A novel method for isolation of Campylobacter spp. from environmental samples, involving sample processing, and blood- and antibiotic-free medium. Baserisalehi M; Bahador N; Kapadnis BP J Appl Microbiol; 2004; 97(4):853-60. PubMed ID: 15357735 [TBL] [Abstract][Full Text] [Related]
10. Magnitude of faecal contamination of rural community well waters in Nigeria and its relationship to well and water properties. Ogan MT Zentralbl Hyg Umweltmed; 1989 Dec; 189(3):277-83. PubMed ID: 2627253 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification. McMahan L; Grunden AM; Devine AA; Sobsey MD Water Res; 2012 Apr; 46(6):1693-704. PubMed ID: 22244995 [TBL] [Abstract][Full Text] [Related]
12. Semiquantitative assessment of the distribution of Salmonella in the environment of caged layer flocks. Wales A; Breslin M; Davies R J Appl Microbiol; 2006 Aug; 101(2):309-18. PubMed ID: 16882138 [TBL] [Abstract][Full Text] [Related]
13. Campylobacters and bacteriophages in the surface waters of Canterbury (New Zealand). Bigwood T; Hudson JA Lett Appl Microbiol; 2009 Mar; 48(3):343-8. PubMed ID: 19187501 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of different analysis and identification methods for Salmonella detection in surface drinking water sources. Hsu BM; Huang KH; Huang SW; Tseng KC; Su MJ; Lin WC; Ji DD; Shih FC; Chen JL; Kao PM Sci Total Environ; 2011 Sep; 409(20):4435-41. PubMed ID: 21782212 [TBL] [Abstract][Full Text] [Related]
15. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Somarelli JA; Makarewicz JC; Sia R; Simon R J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490 [TBL] [Abstract][Full Text] [Related]
16. Evidence of septic system failure determined by a bacterial biochemical fingerprinting method. Ahmed W; Neller R; Katouli M J Appl Microbiol; 2005; 98(4):910-20. PubMed ID: 15752338 [TBL] [Abstract][Full Text] [Related]
17. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Wilkes G; Edge T; Gannon V; Jokinen C; Lyautey E; Medeiros D; Neumann N; Ruecker N; Topp E; Lapen DR Water Res; 2009 May; 43(8):2209-23. PubMed ID: 19339033 [TBL] [Abstract][Full Text] [Related]
18. An optimized enumeration method for sorbitol-fermenting Bifidobacteria in water samples. Long SC; Arango P C; Plummer JD Can J Microbiol; 2005 May; 51(5):413-22. PubMed ID: 16088337 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the effectiveness of a commercially available defined substrate medium and enumeration system for measuring Escherichia coli numbers in faeces and soil samples. Muirhead RW; Littlejohn RP; Bremer PJ Lett Appl Microbiol; 2004; 39(4):383-7. PubMed ID: 15355543 [TBL] [Abstract][Full Text] [Related]
20. Efficiency of modified H2S test for detection of faecal contamination in water. Pathak SP; Gopal K Environ Monit Assess; 2005 Sep; 108(1-3):59-65. PubMed ID: 16160778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]