BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18179540)

  • 1. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters.
    Jenkins MB; Endale DM; Fisher DS
    J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Most probable number methodology for quantifying dilute concentrations and fluxes of Escherichia coli O157:H7 in surface waters.
    Jenkins MB; Endale DM; Fisher DS; Gay PA
    J Appl Microbiol; 2009 Feb; 106(2):572-9. PubMed ID: 19200323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival dynamics of fecal bacteria in ponds in agricultural watersheds of the Piedmont and Coastal Plain of Georgia.
    Jenkins MB; Endale DM; Fisher DS; Adams MP; Lowrance R; Newton GL; Vellidis G
    Water Res; 2012 Jan; 46(1):176-86. PubMed ID: 22088271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a new medium for the enumeration of total coliforms and Escherichia coli in Japanese surface waters.
    Kodaka H; Mizuochi S; Saito M; Matsuoka H
    J Appl Microbiol; 2008 Apr; 104(4):1112-8. PubMed ID: 17976170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waterfowl and the bacteriological quality of amenity ponds.
    Abulreesh HH; Paget TA; Goulder R
    J Water Health; 2004 Sep; 2(3):183-9. PubMed ID: 15497814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.
    Viau EJ; Goodwin KD; Yamahara KM; Layton BA; Sassoubre LM; Burns SL; Tong HI; Wong SH; Lu Y; Boehm AB
    Water Res; 2011 May; 45(11):3279-90. PubMed ID: 21492899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification and prevalence of Salmonella in beef cattle presenting at slaughter.
    Fegan N; Vanderlinde P; Higgs G; Desmarchelier P
    J Appl Microbiol; 2004; 97(5):892-8. PubMed ID: 15479403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique.
    Bushon RN; Brady AM; Likirdopulos CA; Cireddu JV
    J Appl Microbiol; 2009 Feb; 106(2):432-41. PubMed ID: 19200311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for isolation of Campylobacter spp. from environmental samples, involving sample processing, and blood- and antibiotic-free medium.
    Baserisalehi M; Bahador N; Kapadnis BP
    J Appl Microbiol; 2004; 97(4):853-60. PubMed ID: 15357735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnitude of faecal contamination of rural community well waters in Nigeria and its relationship to well and water properties.
    Ogan MT
    Zentralbl Hyg Umweltmed; 1989 Dec; 189(3):277-83. PubMed ID: 2627253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification.
    McMahan L; Grunden AM; Devine AA; Sobsey MD
    Water Res; 2012 Apr; 46(6):1693-704. PubMed ID: 22244995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiquantitative assessment of the distribution of Salmonella in the environment of caged layer flocks.
    Wales A; Breslin M; Davies R
    J Appl Microbiol; 2006 Aug; 101(2):309-18. PubMed ID: 16882138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Campylobacters and bacteriophages in the surface waters of Canterbury (New Zealand).
    Bigwood T; Hudson JA
    Lett Appl Microbiol; 2009 Mar; 48(3):343-8. PubMed ID: 19187501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of different analysis and identification methods for Salmonella detection in surface drinking water sources.
    Hsu BM; Huang KH; Huang SW; Tseng KC; Su MJ; Lin WC; Ji DD; Shih FC; Chen JL; Kao PM
    Sci Total Environ; 2011 Sep; 409(20):4435-41. PubMed ID: 21782212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints.
    Somarelli JA; Makarewicz JC; Sia R; Simon R
    J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of septic system failure determined by a bacterial biochemical fingerprinting method.
    Ahmed W; Neller R; Katouli M
    J Appl Microbiol; 2005; 98(4):910-20. PubMed ID: 15752338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape.
    Wilkes G; Edge T; Gannon V; Jokinen C; Lyautey E; Medeiros D; Neumann N; Ruecker N; Topp E; Lapen DR
    Water Res; 2009 May; 43(8):2209-23. PubMed ID: 19339033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimized enumeration method for sorbitol-fermenting Bifidobacteria in water samples.
    Long SC; Arango P C; Plummer JD
    Can J Microbiol; 2005 May; 51(5):413-22. PubMed ID: 16088337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the effectiveness of a commercially available defined substrate medium and enumeration system for measuring Escherichia coli numbers in faeces and soil samples.
    Muirhead RW; Littlejohn RP; Bremer PJ
    Lett Appl Microbiol; 2004; 39(4):383-7. PubMed ID: 15355543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of modified H2S test for detection of faecal contamination in water.
    Pathak SP; Gopal K
    Environ Monit Assess; 2005 Sep; 108(1-3):59-65. PubMed ID: 16160778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.