These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 18179580)
21. Use of competitive DNA hybridization to identify differences in the genomes of bacteria. Shanks OC; Santo Domingo JW; Graham JE J Microbiol Methods; 2006 Aug; 66(2):321-30. PubMed ID: 16469400 [TBL] [Abstract][Full Text] [Related]
22. Transcriptome analysis of Bifidobacterium longum strains that show a differential response to hydrogen peroxide stress. Oberg TS; Ward RE; Steele JL; Broadbent JR J Biotechnol; 2015 Oct; 212():58-64. PubMed ID: 26299205 [TBL] [Abstract][Full Text] [Related]
23. Identification of the genes associated with a virulent strain of Porphyromonas gingivalis using the subtractive hybridization technique. Tachibana-Ono M; Yoshida A; Kataoka S; Ansai T; Shintani Y; Takahashi Y; Toyoshima K; Takehara T Oral Microbiol Immunol; 2008 Feb; 23(1):84-7. PubMed ID: 18173803 [TBL] [Abstract][Full Text] [Related]
24. Differential genome analysis of bacteria by genomic subtractive hybridization and pulsed field gel electrophoresis. Schmidt KD; Schmidt-Rose T; Römling U; Tümmler B Electrophoresis; 1998 Apr; 19(4):509-14. PubMed ID: 9588796 [TBL] [Abstract][Full Text] [Related]
25. Bifidobacterium mongoliense sp. nov., from airag, a traditional fermented mare's milk product from Mongolia. Watanabe K; Makino H; Sasamoto M; Kudo Y; Fujimoto J; Demberel S Int J Syst Evol Microbiol; 2009 Jun; 59(Pt 6):1535-40. PubMed ID: 19502349 [TBL] [Abstract][Full Text] [Related]
26. [Comparison between genes of highly toxic strain and minimally toxic strain of Porphyromonas gingivalis]. Lin L; Pan YP; Li C Zhonghua Kou Qiang Yi Xue Za Zhi; 2006 Dec; 41(12):734-8. PubMed ID: 17349195 [TBL] [Abstract][Full Text] [Related]
27. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Kullin B; Abratt VR; Reid SJ Appl Microbiol Biotechnol; 2006 Oct; 72(5):975-81. PubMed ID: 16523284 [TBL] [Abstract][Full Text] [Related]
28. Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Galbraith EA; Antonopoulos DA; White BA Environ Microbiol; 2004 Sep; 6(9):928-37. PubMed ID: 15305918 [TBL] [Abstract][Full Text] [Related]
29. [Identification of differential genomic genes of Mycobacterium tuberculosis H37Rv and attenuated strain H37Ra by suppression subtractive hybridization]. Xiong ZH; Zhuang YH; Li GL Yi Chuan Xue Bao; 2005 Sep; 32(9):979-85. PubMed ID: 16201243 [TBL] [Abstract][Full Text] [Related]
30. Suppression Subtractive Hybridization (SSH) and its modifications in microbiological research. Huang X; Li Y; Niu Q; Zhang K Appl Microbiol Biotechnol; 2007 Sep; 76(4):753-60. PubMed ID: 17634936 [TBL] [Abstract][Full Text] [Related]
31. Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. Zuo F; Yu R; Feng X; Khaskheli GB; Chen L; Ma H; Chen S Appl Microbiol Biotechnol; 2014 Sep; 98(17):7523-34. PubMed ID: 24903816 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of the PCR method for identification of Bifidobacterium species. Youn SY; Seo JM; Ji GE Lett Appl Microbiol; 2008 Jan; 46(1):7-13. PubMed ID: 18086194 [TBL] [Abstract][Full Text] [Related]
33. Identification and distribution of accessory genome DNA sequences from an invasive African isolate of Salmonella Heidelberg. Bronowski C; Winstanley C FEMS Microbiol Lett; 2009 Sep; 298(1):29-36. PubMed ID: 19594621 [TBL] [Abstract][Full Text] [Related]
34. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. Parche S; Beleut M; Rezzonico E; Jacobs D; Arigoni F; Titgemeyer F; Jankovic I J Bacteriol; 2006 Feb; 188(4):1260-5. PubMed ID: 16452407 [TBL] [Abstract][Full Text] [Related]
35. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. Lee JH; Karamychev VN; Kozyavkin SA; Mills D; Pavlov AR; Pavlova NV; Polouchine NN; Richardson PM; Shakhova VV; Slesarev AI; Weimer B; O'Sullivan DJ BMC Genomics; 2008 May; 9():247. PubMed ID: 18505588 [TBL] [Abstract][Full Text] [Related]
36. PCR and real-time PCR primers developed for detection and identification of Bifidobacterium thermophilum in faeces. Mathys S; Lacroix C; Mini R; Meile L BMC Microbiol; 2008 Oct; 8():179. PubMed ID: 18847469 [TBL] [Abstract][Full Text] [Related]
37. Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. Ammor MS; Flórez AB; Alvarez-Martín P; Margolles A; Mayo B J Antimicrob Chemother; 2008 Oct; 62(4):688-93. PubMed ID: 18614524 [TBL] [Abstract][Full Text] [Related]
38. Identification and distribution of putative virulent genes in strains of Streptococcus suis serotype 2. Jiang H; Fan HJ; Lu CP Vet Microbiol; 2009 Feb; 133(4):309-16. PubMed ID: 18762393 [TBL] [Abstract][Full Text] [Related]
39. Relationship between genome similarity and DNA-DNA hybridization among closely related bacteria. Kang CH; Nam YD; Chung WH; Quan ZX; Park YH; Park SJ; Desmone R; Wan XF; Rhee SK J Microbiol Biotechnol; 2007 Jun; 17(6):945-51. PubMed ID: 18050912 [TBL] [Abstract][Full Text] [Related]
40. Analysis of infant isolates of Bifidobacterium breve by comparative genome hybridization indicates the existence of new subspecies with marked infant specificity. Boesten R; Schuren F; Wind RD; Knol J; de Vos WM Res Microbiol; 2011 Sep; 162(7):664-70. PubMed ID: 21726634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]