BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18179592)

  • 1. Brazilian isolates of Clonostachys rosea: colonization under different temperature and moisture conditions and temporal dynamics on strawberry leaves.
    Cota LV; Maffia LA; Mizubuti ES
    Lett Appl Microbiol; 2008 Mar; 46(3):312-7. PubMed ID: 18179592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontrol agents efficiently inhibit sporulation of Botrytis aclada on necrotic leaf tips but spread to adjacent living tissue is not prevented.
    Yohalem DS; Nielsen K; Green H; Funck Jensen D
    FEMS Microbiol Ecol; 2004 Mar; 47(3):297-303. PubMed ID: 19712318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation.
    Kim JH; Lee SH; Kim CS; Lim EK; Choi KH; Kong HG; Kim DW; Lee SW; Moon BJ
    J Microbiol Biotechnol; 2007 Mar; 17(3):438-44. PubMed ID: 18050947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry.
    Mamarabadi M; Jensen B; Jensen DF; Lübeck M
    FEMS Microbiol Lett; 2008 Aug; 285(1):101-10. PubMed ID: 18557783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent growth of Botrytis cinerea isolates from potted plants.
    Martínez JA; Gómez-Bellot MJ; Bañón S
    Commun Agric Appl Biol Sci; 2009; 74(3):729-38. PubMed ID: 20222557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and pathogenicity of isolates of the fungus Metarhizium anisopliae against the parasitic mite, Psoroptes ovis: effects of temperature and formulation.
    Brooks AJ; de Muro MA; Burree E; Moore D; Taylor MA; Wall R
    Pest Manag Sci; 2004 Oct; 60(10):1043-9. PubMed ID: 15481832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultural methods and environmental conditions affecting gray mold and its management in lisianthus.
    Shpialter L; David DR; Dori I; Yermiahu U; Pivonia S; Levite R; Elad Y
    Phytopathology; 2009 May; 99(5):557-70. PubMed ID: 19351252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypical differences among B. cinerea isolates from ornamental plants.
    Martínez JA; Valdés R; Vicente MJ; Bañón S
    Commun Agric Appl Biol Sci; 2008; 73(2):121-9. PubMed ID: 19226749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to Verticillium dahliae (Kleb.) in the strawberry breeding lines.
    Zebrowska J; Hortyński J; Cholewa T; Honcz K
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1031-6. PubMed ID: 17390855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecophysiological requirements and survival of a Trichoderma atroviride isolate with biocontrol potential.
    Longa CM; Pertot I; Tosi S
    J Basic Microbiol; 2008 Aug; 48(4):269-77. PubMed ID: 18720503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry.
    Ishii H; Fountaine J; Chung WH; Kansako M; Nishimura K; Takahashi K; Oshima M
    Pest Manag Sci; 2009 Aug; 65(8):916-22. PubMed ID: 19444805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces.
    Krimm U; Abanda-Nkpwatt D; Schwab W; Schreiber L
    FEMS Microbiol Ecol; 2005 Aug; 53(3):483-92. PubMed ID: 16329966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi.
    Li CJ; Gao JH; Nan ZB
    Mycol Res; 2007 Oct; 111(Pt 10):1220-7. PubMed ID: 17988846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation, development, and survival of cleistothecia of Podosphaera aphanis and their role in the epidemiology of strawberry powdery mildew.
    Gadoury DM; Asalf B; Heidenreich MC; Herrero ML; Welser MJ; Seem RC; Tronsmo AM; Stensvand A
    Phytopathology; 2010 Mar; 100(3):246-51. PubMed ID: 20128698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts.
    Maduell P; Armengol G; Llagostera M; Lindow S; Orduz S
    J Appl Microbiol; 2007 Dec; 103(6):2593-600. PubMed ID: 18045443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of grey mould in strawberry fruits by halophilic bacteria.
    Essghaier B; Fardeau ML; Cayol JL; Hajlaoui MR; Boudabous A; Jijakli H; Sadfi-Zouaoui N
    J Appl Microbiol; 2009 Mar; 106(3):833-46. PubMed ID: 19191973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature and anhydrous electron microscopy techniques to observe the infection process of the bacterial pathogen Xanthomonas fragariae on strawberry leaves.
    Allan-Wojtas P; Hildebrand PD; Braun PG; Smith-King HL; Carbyn S; Renderos WE
    J Microsc; 2010 Sep; 239(3):249-58. PubMed ID: 20701664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of ramulosis disease of cotton under controlled environment and field conditions.
    Monteiro JE; Sentelhas PC; Gleason ML; Esker PD; Chiavegato EJ
    Phytopathology; 2009 Jun; 99(6):659-65. PubMed ID: 19453224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.